
Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery

3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .

Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales

Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc

Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.

Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc

Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.

release time:2024-06-04 Hits: Popular:AG11 battery
New breakthroughs made in research on cathode materials for nanometer super-capacity NiMH No.7 batteries
Electric vehicles will become an important green means of transportation in the future, and there is an urgent need to develop new high-capacity, high-stability and high-safety NiMH No.7 batteries. Scientists are also constantly trying various methods to improve the performance of NiMH No.7 batteries. Nanonization is a common method to improve the electrochemical properties of materials, especially for materials with low conductivity such as lithium iron phosphate, which has a significant improvement effect. The advantage of nanometerization is that the transmission path of lithium ions is shortened and better rate performance can be obtained. Compared with bulk materials, the disadvantages of nanometerization include the reduction of the binding energy of surface lithium and interface atoms, which will lead to a loss of capacity and a decrease in voltage; the large specific surface area after nanometerization will bring more active sites, a large number of The contact between the active sites and the electrolyte will also become an important factor affecting the charge and discharge stability of NiMH No.7 batteries; the reduction in tap density and energy density caused by nanotechnology is a problem that cannot be ignored in industrial production.
(A) Charge and discharge curves of 40nm LiFePO4 with ordinary carbon and super-capacity carbon; (B) Charge and discharge curves of 83nmLiFePO4 with ordinary carbon and super-capacity carbon; (C) Exposed LiFePO4 interface; (D) After reconstruction LiFePO4 interface (N represents the ordinary carbon coating method, E represents the super capacity carbon coating method)
In order to carry forward the advantages of nanotechnology and overcome its shortcomings, after three years of hard work, Professor Pan Feng's research group from the School of New Materials, Peking University Shenzhen Graduate School finally made an important breakthrough. They cleverly covered the surface of nano-lithium iron phosphate with a shell that can coordinate with the interface (C-O-Fe chemical bonds generated on the surface of lithium iron phosphate), which not only increased the binding energy of lithium ions on the surface, but also appeared additional lithium ion storage sites. Using the reconstructed nano-lithium iron phosphate material, when the average particle size is 42nm, the material capacity can reach 207mAhg-1, exceeding 21% of its theoretical capacity (170mAhg-1), so it is a new type of super-capacity nanocathode. Material. The material has good stability and can maintain 99% of its capacity after 1,000 cycles at 10°C.
(A) The effect of LiFePO4 particle size on capacity after reconstruction (black dots and blue dots are theoretical values, red dots are experimental values); (B-D) Ordinary carbon-coated and super-coated lithium iron manganese phosphate, lithium manganese phosphate and lithium cobalt phosphate. Charge and discharge curve of capacity package carbon
Through a combination of quantum chemical theoretical calculations and experiments, the team revealed the mechanism of nanometer super-capacity energy storage. This discovery is of great significance to the development of new nanometer energy storage materials. People can reconstruct the interface shell by designing coordination groups, not only It can achieve ultra-capacity energy storage and also improve the stability of nanomaterial applications. This work was recently published in NanoLetters (DOI: 10.1021/acs.nanolett.7b02315, impact factor 12.7, one of the natural publishing index journals), an excellent international journal in the field of materials. This work was completed under the guidance of Professor Pan Feng and in collaboration with Dr. Duan Yandong, Dr. Zhang Bingkai, Dr. Zheng Jiaxin and 2015 doctoral student Hu Jiangtao. Important collaborators in this work include Professor Khalil Amine and Professor Yang Ren of Argonne National Laboratory, Professors Lin-WangWang and Wanli Yang of Berkeley National Laboratory, and Professor Chong-MinWang of Pacific Northwest National Laboratory. This work was supported by the National New Energy Vehicle (Power Lithium Battery) Technology Innovation Project, the Guangdong Provincial Science and Technology Innovation Team Introduction Project, the Guangdong Provincial Natural Science Foundation, the Shenzhen Science and Technology Innovation Commission Fund, the U.S. Department of Energy, and the Shenzhen National Supercomputing Center .
Read recommendations:
The custom process of lithium batteries and what to pay attention to
Last article:AAA Ni-MH batteries
Next article:1.2V NiMH batteries
Popular recommendation
AAA Ni-MH batteries wholesaler
2023-03-22energy storage battery for solar system Vendor
2023-05-10Rack-mounted energy storage battery GN-192V 100Ah
2023-05-1018650 li-ion battery
2023-03-22602248 battery company
2023-03-22Coin Battery CR 1212
2022-09-27Coin Battery CR 1130
2022-09-27903242 2500MAH 3.7V
2023-06-10R20
2022-07-01501825 180MAH 3.7V
2023-06-1218650 7200MAH 3.7V
2022-07-29Coin Battery CR 1216
2022-09-279V card-mounted carbon battery 6F22
2023-06-28102540 1100MAH 3.7V
2023-06-12Coin Battery CR 2330
2022-09-27lithium battery 18650
2023-06-25603450 lipo battery
2023-06-25702535 lipo battery
2023-06-25LR1130 battery
2023-06-25401030 lipo battery
2023-06-25Methods to extend the service life of lithium batteries
2024-03-21Wide - Temperature Lithium - Ion Batteries
2025-06-24Enhancement of Lithium - battery Electrolyte Stability
2025-09-11Capacity Range of Shaped Batteries
2025-04-12Rechargeable Lithium Batteries for Electric Vehicles
2025-04-01Rechargeable batteries with materials.3.7v 18650 lithium battery.CR2032 button cell battery
2023-08-15Six advantages of lithium-ion batteries for everyone to know!
2023-06-27Lithium manganate battery parameters.12V27A battery
2023-07-03What should I pay attention to when buying UPS power supply?
2023-02-15Application of Lithium Ion Battery Technology
2022-11-12
360° FACTORY VR TOUR