Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-01-04 Hits: Popular:AG11 battery
High-throughput calculations of sodium migration energies were performed on about 4300 compounds in the inorganic crystal structure database, and the compound indeed showed excellent high-rate performance and cycle durability; in detail, the compound showed stable 10C cycling, Its full charging rate is only 6 minutes. /Discharge and approximately 94% capacity retention after 50 charge-discharge cycles at room temperature. These results are comparable to or better than typical cathode materials for sodium-ion batteries.
Researchers at Japan's Nagoya Institute of Technology (Nitech) have demonstrated that a special material can serve as a highly efficient battery component for sodium-ion batteries, competing with lithium-ion batteries on multiple battery characteristics, especially charging speed.
The findings were published in the November 2018 issue of Scientific Reports and were led by Dr. Naoto Tanibata, assistant professor in the Department of Advanced Ceramics at Nitech.
The popular lithium-ion batteries have several benefits - they are rechargeable and have a wide range of applications. They are used in devices such as laptops and mobile phones, as well as hybrid and fully electric vehicles. Electric vehicles are an important technology to solve rural pollution and achieve clean and sustainable transportation, and play an important role in solving the energy and environmental crisis. One disadvantage of lithium is that it is a limited resource. Not only is it expensive, but its annual production is (technically) limited (due to the drying process). Given the increasing demand for battery-powered devices, especially electric vehicles, the need to find alternatives to lithium, which is both cheap and abundant, has become increasingly urgent.
Sodium-ion batteries are an attractive alternative to lithium-ion batteries for several reasons. Sodium is not a finite resource - it is abundant in the earth's crust and in seawater. Additionally, with appropriate crystal structure design, sodium-based components have the potential to produce faster charging times. However, sodium cannot simply be swapped with lithium, which is used in current battery materials because it has a larger ion size and a slightly different chemistry. Therefore, researchers need to find the best sodium-ion battery material through trial and error among a large number of candidate materials.
Nitech scientists have found a reasonable and effective way to solve this problem. After extracting approximately 4,300 compounds from a crystal structure database and performing high-throughput calculations on them, one compound yielded good results and is therefore a promising candidate for a sodium-ion battery component. The researchers found that Na2V3O7 has good electrochemical properties as well as crystal and electronic structure. The compound has fast charging properties and can be charged stably within 6 minutes. The researchers also demonstrated that the compound has long battery life and short charging time.
"We aim to solve the biggest obstacle that large batteries face in applications such as electric vehicles that rely heavily on long charging times. We are approaching this problem with a search that will yield materials that are efficient enough to improve the battery's rate performance .”
Despite Na2v3o7's promising properties and overall expected impact on sodium-ion batteries, the researchers found that Na2v3o7 degraded during the final charging stage, which limited the actual storage capacity to half the theoretical storage capacity. In their future experiments, the researchers therefore aim to improve the properties of this material so that it remains stable throughout the charging phase. "Our ultimate goal is to establish a method that allows us to efficiently design battery materials through a combination of computational and experimental approaches," added Dr. Tanibata.
Read recommendations:
Differences between graphene battery and lithium battery
Influence of different temperature on performance of lithium battery pack
Last article:NiMH No.7 battery.Shanghai Silicate Institute has made progress in the research on the interface mod
Next article:18650 battery 10000mah.Hyundai, Toyota and others cooperate to develop hydrogen power and accelerate
Popular recommendation
12v 400ah lithium ion battery pack
2023-05-0918650 lithium 3.7 battery
2023-03-22Ni-MH battery packs
2023-03-2218650 lithium ion battery 3.7v
2023-03-22battery for solar energy storage Processing
2023-05-10551521 130mAh 3.7V
2022-07-01601435 270MAH 3.7V
2023-06-1216340 700MAH 3.7V
2022-10-15Coin Battery LR 927
2022-10-1518650 2400mAh 3.7V
2022-06-20R20
2022-08-19505060 2000MAH 7.4V
2023-06-10Lithium-ion battery GN200
2022-07-296LR61
2023-02-07Rack-mounted energy storage battery GN-192V 100Ah
2022-09-271800mah 18650 battery
2023-06-25Lithium Battery
2023-06-2518650 3.7v battery
2023-06-25CR2354 battery
2023-06-256F22 battery
2023-06-25Types of lithium batteries
2024-03-27Maintenance rules for unmanned aerial vehicle lithium batteries
2024-06-06Affects the service life of ternary lithium batteries
2024-05-14What is polymer lithium battery
2024-04-30The working principle, characteristics and structure of the AGV car
2023-02-15Correspondence base station lithium iron phosphate lithium battery
2023-02-18R03 Carbon battery.Avoiding the battery and talking about PMS is just being a hooligan.
2023-10-14Information contained in lithium battery discharge curves
2023-02-07Lithium battery charging method
2023-06-01Disadvantages of zinc air battery
2022-11-19