Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2023-10-26 Hits: Popular:AG11 battery
Chemical decay mechanism
Chemical attenuation mainly refers to the contamination of the polymer electrolyte membrane by free radicals or ions. Free radicals mainly come from H2O2 or ·OH·OOH free radicals generated during the redox reaction. Free radicals will attack the end groups or main chains of the polymer electrolyte membrane, causing degradation reactions, making the electrolyte membrane thinner or even perforated. Ion pollution mainly comes from dissolved ions in other parts of the fuel cell (such as bipolar plates) or from external ion pollution sources (such as air). The groups of the electrolyte membrane are exchanged by impurity ions, making the electrolyte membrane more susceptible to free radical attack. Deterioration occurs. Especially in the presence of Fe2+, the Fenton reaction between H2O2 and Fe2+ greatly enhances the oxidation and causes greater damage to the polymer electrolyte membrane. In addition, the degradation products produced by free radicals attacking the electrolyte membrane may cause catalyst poisoning, leading to a significant decrease in fuel cell performance.
In order to solve the problem of chemical decay of fuel cells, high-purity materials can be used to manufacture fuel cell components, while attention should be paid to avoiding the introduction of impurity ions during the manufacturing process. In addition, a free radical scavenger (quencher) needs to be added to the membrane electrode assembly to improve the durability of the fuel cell.
Existing Technologies to Address Chemical Decay
The existing technology discloses the use of single ions such as cerium ions and silver ions as free radical scavengers. However, these ions will hinder the diffusion of protons and water, and these ions can easily exchange ions with protons, reducing the conductivity of the fuel cell. sex. In addition, these ions easily form hydroxides or oxide precipitates in the higher pH part of the fuel cell, thereby losing their function as free radical scavengers. If these ions are reduced and become metal precipitates, it will affect the electrode reaction of the catalyst layer.
Toyota’s technical solution to chemical decay
In order to solve the above problems, reduce the chemical attenuation of the fuel cell electrolyte membrane, and extend the service life of the electrolyte membrane, Toyota disclosed a method using two different free radical scavengers (main free radical scavengers respectively) in a newly published patent. The main free radical scavenger is used to reduce free radicals to ions, and at the same time it changes from the reducing body (A) to the oxidized body (A). The secondary free radical scavenger It is used to reduce the oxidized body (A) of the main free radical scavenger to the reducing body (A), while the secondary free radical scavenger is oxidized to the oxidized body (B), and the oxidized body (B) can also be absorbed by the membrane electrode assembly. The reducing agent (such as hydrogen, formic acid, which is a decomposition product of the electrolyte, etc.) is reduced to the reduced form (B). Therefore, only a small dose of free radical scavenger is needed to effectively eliminate free radicals in the membrane electrode assembly, and since the secondary free radical scavenger serves as a cocatalyst to regenerate the main free radical scavenger, through two free radical elimination The coexistence of the main free radical scavenger increases the regeneration speed of the main free radical scavenger and improves the utilization efficiency of the main free radical scavenger.
1+1>2? See how Toyota combats chemical decay in fuel cells
As can be seen from the figure above, the redox potential of the redox pair (B) is lower than that of the redox pair (A), and higher than the redox potential of formic acid. Since the membrane electrode assembly contains hydrogen peroxide, Fenton active large metal ions cannot be used as redox pairs, such as Fe ions (Fe2+, Fe3+), free Cu ions (Cu+, Cu2+) and free V-containing ions (V2+ , V3+, V4+, VO2+, V5+, VO2+).
In order to improve the effect of the free radical scavenger, the redox potential of the free radical scavenger is preferably higher than 0.64VvsNHE and lower than 1.76VvsNHE.
Examples of free radical scavengers
Toyota further discloses examples of qualifying free radical scavengers in patent documents.
Metals, metal ions or metal oxides that function as free radical scavengers include: Ag+/Ag2+(1.98), Co2+/Co3+(1.92), Au+/Au(1.83), Ce3+/Ce4+(1.72), Ni2+/NiO2( 1.59), Ni2+/Ni2O3(1.75), Cr3+/CrO42-(1.45), Cr3+/Cr2O72-(1.33), Pr2O3/PrO2(1.43), SbO+/SbO3-(0.68), Bi3+/Bi2O5(1.76), BiO+/ Bi2O5(1.61), Mn2+/MnO2(1.23), Ir/Ir3+(1.156), iron pyridine complex ion (Fe(Bi)3+/Fe(Bi)2+)(1.11), Sb2O5/Sb2O4(1.06) , Pd/Pd+(0.92), Rh/Rh3+(0.76), RuO2/Ru+(0.68), Ag/Ag+(0.79), TiO2+/Ti3+(0.19), Sn4+/Sn2+(0.15), etc.
Free radical scavengers can also choose redox pairs that do not contain metal elements, such as imide compounds, quinone compounds, viologen derivatives, phenoxy derivatives, thiophene derivatives and their polymers.
Free radical scavenger addition method
In the case of ion exchange between the free radical scavenger and the acid group of the electrolyte, the total added amount of the free radical scavenger is less than 10%. According to the embodiment of Toyota's patent, the total added amount is preferably 0.05%-0.5%. For free radical scavengers that do not undergo ion exchange, the total added amount is preferably 0.01wt%-0.1wt% based on mass fraction.
The ratio between the main free radical scavenger and the secondary free radical scavenger (main free radical scavenger/secondary free radical scavenger) can be between 1/10-10/1, preferably an equivalent of about 1/1 Molar concentration ratio.
The free radical scavenger can be added to the electrolyte membrane, electrode or gas diffusion layer. The main free radical scavenger and the secondary free radical scavenger can be added to the same location or to different locations. Toyota further disclosed the preparation process for adding free radical scavengers to different parts.
Read recommendations:
The application of lithium batteries in the new energy vehicle industry.602030 battery
Long-Lasting Lithium Batteries
Last article:CR1225 battery.Is it feasible to use power batteries step by step?
Next article:4LR44 battery.New power battery technology will be brilliant, and the reduction of subsidies will ma
Popular recommendation
Ni-MH battery pack
2023-05-0918650 battery 2600mah
2023-03-2232700 battery
2023-03-22solar energy battery storage system Processing
2023-05-1016340 battery price
2023-03-22Alkaline 9V Battery LR61
2022-11-116LR61
2022-07-01602535 500MAH 3.7V
2023-06-106F22
2022-07-04551521 130MAH 3.7V
2023-06-12No.7 card-mounted carbon battery R03P
2023-06-28Lithium Battery GN4830
2022-08-1921700 4800MAH 3.7V
2022-10-15LR03
2022-07-01551235 180mAh 3.7V
2022-07-01LR626 battery
2023-06-2518650 battery 3500mah lithium
2023-06-2518650 battery pack Manufacturing
2023-06-25902030 battery
2023-06-25button battery 2032
2023-06-25Why is it full of nickel -metal hydride battery charging.104ah solar energy storage battery Vendor
2023-04-07How to store lithium batteries when not in use for a long time
2024-05-08The correct charging method for lithium batteries
2024-08-14Compatibility of Lithium Battery Chargers
2024-10-17Graphene battery technology principle.lithium battery energy storage Processing
2023-04-06Common parameters of rechargeable batteries.3.7V 18650 lifepo4 battery.CR2430 battery
2023-08-15lithium ion battery 18650 price.Lithium-ion battery testing will use laser measurement technology
2023-10-14What are the main advantages of using polymer batteries?rechargeable battery 18650 3.7v
2023-09-08How to charge lithium iron phosphate batteries correctly?502030 battery
2023-08-19The thermal stability of lithium -ion battery and overcharge, high temperature and short -circuit sa
2023-03-24