18650 rechargeable battery lithium 3.7v 3500mah
CH
About Us
Company Profile Development History Sales Network Partner Social Responsibility
Products
Rechargeable Battery Battery Packs Energy Storage Battery Primary Battery Handicraft Article
Subsidiary Company
SINO TECHNOLOGY SUNBEAM GREEN POWER DATAPOWER SEONG-HEE STD
Honor
Qualification Certificate Patent Certificate Honor Certificate
R&D
R&D Center Test Center
News
Company News Industry News
Contact Us
18650 rechargeable battery lithium 3.7v 3500mah
18650 rechargeable battery lithium 3.7v 3500mah

Other information

Home  >  Other information

3.2v 25ah lifepo4 battery cell.Manufacturing process uses the sun's heat to generate cheaper, renewable electricity

release time:2023-11-29 Hits:     Popular:AG11 battery

  

  Solar power accounts for less than 2% of U.S. electricity, but more can be made up for by lower-cost generation and energy storage used on cloudy days and at night. A Purdue University-led team has developed a new material and manufacturing process that can use the sun's energy as a form of heat - and generate electricity more efficiently. This innovation is an important step toward making solar power directly cost competitive with fossil fuels, which generate more than 60% of the electricity in the United States. "Storing solar energy as heat is already cheaper than storing energy through batteries, so the next step is to lower the cost of solar power while adding the added benefit of greenhouse gas emissions," said Reilly Professor Kenneth Sandhage of Purdue University. Materials Engineering. The research, conducted at Purdue University in collaboration with Georgia Institute of Technology, the University of Wisconsin-Madison and Oak Ridge National Laboratory, was published in the journal Nature. This effort aligns with Purdue’s Giant Leap Celebration, recognizing the university’s global progress for a sustainable economy and planet during Purdue’s 150th anniversary. It’s one of four themes at the Festival of Ideas, a yearlong celebration designed to showcase Purdue as a center of knowledge solving real-world problems. Solar energy doesn't just generate electricity through panels on your farm or on your roof. Another option is a centralized power plant that runs on thermal energy. Concentrated solar power plants convert solar energy into electricity by using mirrors or lenses to concentrate large amounts of light into a small area, creating heat that is transferred to molten salt. The heat from the molten salt is then transferred to the "working" fluid, supercritical carbon dioxide, which expands and is used to spin a turbine to produce electricity. To make solar power cheaper, turbine engines need to produce more electricity for the same amount of heat, which means the engines need to be hotter. The problem is that the heat exchangers that transfer heat from the hot molten salt to the working fluid are currently made of stainless steel or nickel-based alloys, which become too soft at the higher temperatures and high pressures of supercritical carbon dioxide required. Inspired by his group's previous amalgamation of fabricated "composite" materials that could handle the high temperatures and pressures of applications such as solid-fuel rocket nozzles, Sandhage collaborated with Asegun Henry, now at MIT, to envision similar materials. Composite materials are used for stronger heat exchangers. Two materials show promise together as composites: ceramic zirconium carbide and metallic tungsten. Purdue University researchers create sheets of ceramic-metal composite material. Based on channel simulations conducted by Devesh Ranjan’s team at GeorgiaTech, the plates can be customized with customizable heat exchange channels. Mechanical testing by Edgar Lara-Curzio's team at Oak Ridge National Laboratory and corrosion testing by Mark Anderson's team at Wisconsin-Madison showed that the new composite material can successfully withstand the high-temperature, high-pressure supercritical carbon dioxide required to generate it. Electricity is more efficient than today's heat exchangers. An economic analysis by researchers at Georgia Tech and Purdue University also shows that these heat exchangers can be manufactured at scale at the same or lower cost than those made from stainless steel or nickel alloys. "Ultimately, as it continues to develop, this technology will allow renewable solar energy to penetrate the grid at scale," Sandhage said. “This will mean a significant reduction in anthropogenic CO2 emissions from electricity production.”


Read recommendations:

14500 850mAh 3.7V

Classification of ternary lithium batteries

Which raw materials are mainly used for lithium battery production

902035 lipo battery Factory

LR41 battery

Last article:402030 polymer battery.Ultra-cheap earth elements drive new battery technology to the industry

Next article:AG11 battery.my country's seven major lithium battery technologies and resources are controlled by f

Popular recommendation

360° FACTORY VR TOUR
lithium ion battery 18650 priceWhatsapp
lithium ion battery 18650 price

lithium ion battery 18650 priceTel
+86 19925278095

lithium ion battery 18650 priceEmail
admin@sino-techgroup.com

TOP