Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-06-14 Hits: Popular:AG11 battery
Are AG13 battery going to "take over"? Researchers solve the EDL effect puzzle in solid electrolytes
Advances in lithium-ion (Li-ion) batteries have made a variety of portable devices feasible and promoted the development of electronic products. However, the inherent shortcomings of traditional Li-ion batteries, whose batteries use liquid electrolyte solutions, make them not entirely suitable for highly anticipated applications such as electric vehicles. These limitations include limited durability, low capacity, safety issues, and environmental concerns about their toxicity and carbon footprint. Fortunately, scientists are now focusing on the next-generation solution to address all of these issues: AG13 battery. The use of solid electrolytes makes this type of battery safer and able to maintain greater power density.
However, a key problem with these batteries is the high resistance at the electrolyte-electrode interface, which reduces the output of AG13 battery and prevents them from charging quickly. One discussed mechanism behind this high interfacial resistance is the electrical double layer (EDL) effect, which involves the collection of charged ions from the electrolyte at the interface with the electrode. This creates a layer of positive or negative charge, which in turn causes charges of the opposite sign to accumulate at equal density across the electrode, forming a double layer of charge. The problem with detecting and measuring EDL in AG13 battery is that traditional electrochemical analysis methods cannot solve the problem.
At Tokyo University of Science, scientists led by Associate Professor Tohru Higuchi have solved this dilemma using a completely new method to evaluate the EDL effect in solid electrolytes for AG13 battery. The study, published online in Nature's Communications Chemistry, was conducted in collaboration with Takashi Tsuchiya, Principal Investigator at the International Center for Materials Nanostructures (MANA) at the National Institute for Materials Science in Japan, and Kazuya Terabe, Principal Investigator at MANA from the same organization.
The new method revolves around a field-effect transistor (FET) made using hydrogenated diamond and a solid lithium-based electrolyte. A FET is a three-terminal transistor in which the current between the source and drain can be controlled by applying a voltage on the gate. This voltage controls the density of electrons or holes (positively charged "electron vacancies") due to the electric field generated in the semiconductor region of the FET. By exploiting these properties and using a chemically inert diamond channel, the scientists ruled out the chemical reduction-oxidation effect that affects the conductivity of the channel, leaving only the static charge accumulated due to the EDL effect as the necessary cause.
The scientists therefore performed Hall effect measurements on diamond electrodes, which are sensitive only to charged carriers on the surface of the material. They used different types of lithium-based electrolytes and studied how their composition affects the EDL. Through their analysis, they revealed an important aspect of the EDL effect: it is determined by the composition of the electrolyte near the interface (about 5 nanometers thick). If the electrolyte material allows charge-compensating reduction-oxidation reactions to occur, the EDL effect can be suppressed by several orders of magnitude.
The team now plans to use their method to analyze the EDL effect in other electrolyte materials, hoping to find clues on how to reduce the interfacial resistance of next-generation batteries. We hope that our method will lead to the development of AG13 battery with very high performance in the future, Dr. Higuchi concluded. In addition, a better understanding of the EDL will also help in the development of capacitors, sensors, memories, and communication devices. Let us hope that other scientists will be able to explore this complex phenomenon more easily, leading to continued progress in the field of solid-state ionic devices.
Read recommendations:
AG1 battery.What is the process for customizing 18650 lithium-ion battery packs?
Power type lithium battery and ordinary lithium battery difference
Popular recommendation
18650 li ion battery
2023-03-22Battery Pack direct sales
2023-05-0918650 battery pack manufacture
2023-05-09551235 lipo battery
2023-03-22cabinet type energy storage battery Manufacturing
2023-05-10LR20
2023-02-07Business laptop bag
2022-09-22LR6
2022-08-1918650 800mAh 3.7V
2022-08-19601848 500mAh 3.7V
2022-08-19Rack-mounted energy storage battery GN-192V 100Ah
2022-09-27186095 6000mAh 7.4V
2022-08-23Home energy storage battery GN-BOX3
2022-09-27LR14
2022-08-19Lithium Battery LQ-1212
2022-08-1918650 battery 3.7v 1800mah
2023-06-25602030 lipo battery
2023-06-25NiMH No.7 batteries
2023-06-25aa battery
2023-06-25401030 polymer battery
2023-06-25Do you know all these terms in the battery industry
2024-08-22Square Lithium - ion Batteries in Emergency Power Supplies
2025-04-25Advantages Analysis of Polymer Lithium Batteries
2024-11-05Chemical battery.li ion 18650 battery pack
2023-07-10Lithium battery manufacturers explain what is the use of lithium ion batteries?lithium iron phosphat
2023-03-17How long is the three -yuan lithium battery life
2023-02-15Design of lithium battery.household energy storage lithium battery manufacture
2023-05-08Can the new type of water lithium battery power be replaced by 18650 lithium batteries?household ene
2023-04-1926650 lithium battery cathode material
2022-12-05Lithium iron phosphate battery pack
2022-11-07