Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-06-14 Hits: Popular:AG11 battery
Are AG13 battery going to "take over"? Researchers solve the EDL effect puzzle in solid electrolytes
Advances in lithium-ion (Li-ion) batteries have made a variety of portable devices feasible and promoted the development of electronic products. However, the inherent shortcomings of traditional Li-ion batteries, whose batteries use liquid electrolyte solutions, make them not entirely suitable for highly anticipated applications such as electric vehicles. These limitations include limited durability, low capacity, safety issues, and environmental concerns about their toxicity and carbon footprint. Fortunately, scientists are now focusing on the next-generation solution to address all of these issues: AG13 battery. The use of solid electrolytes makes this type of battery safer and able to maintain greater power density.
However, a key problem with these batteries is the high resistance at the electrolyte-electrode interface, which reduces the output of AG13 battery and prevents them from charging quickly. One discussed mechanism behind this high interfacial resistance is the electrical double layer (EDL) effect, which involves the collection of charged ions from the electrolyte at the interface with the electrode. This creates a layer of positive or negative charge, which in turn causes charges of the opposite sign to accumulate at equal density across the electrode, forming a double layer of charge. The problem with detecting and measuring EDL in AG13 battery is that traditional electrochemical analysis methods cannot solve the problem.
At Tokyo University of Science, scientists led by Associate Professor Tohru Higuchi have solved this dilemma using a completely new method to evaluate the EDL effect in solid electrolytes for AG13 battery. The study, published online in Nature's Communications Chemistry, was conducted in collaboration with Takashi Tsuchiya, Principal Investigator at the International Center for Materials Nanostructures (MANA) at the National Institute for Materials Science in Japan, and Kazuya Terabe, Principal Investigator at MANA from the same organization.
The new method revolves around a field-effect transistor (FET) made using hydrogenated diamond and a solid lithium-based electrolyte. A FET is a three-terminal transistor in which the current between the source and drain can be controlled by applying a voltage on the gate. This voltage controls the density of electrons or holes (positively charged "electron vacancies") due to the electric field generated in the semiconductor region of the FET. By exploiting these properties and using a chemically inert diamond channel, the scientists ruled out the chemical reduction-oxidation effect that affects the conductivity of the channel, leaving only the static charge accumulated due to the EDL effect as the necessary cause.
The scientists therefore performed Hall effect measurements on diamond electrodes, which are sensitive only to charged carriers on the surface of the material. They used different types of lithium-based electrolytes and studied how their composition affects the EDL. Through their analysis, they revealed an important aspect of the EDL effect: it is determined by the composition of the electrolyte near the interface (about 5 nanometers thick). If the electrolyte material allows charge-compensating reduction-oxidation reactions to occur, the EDL effect can be suppressed by several orders of magnitude.
The team now plans to use their method to analyze the EDL effect in other electrolyte materials, hoping to find clues on how to reduce the interfacial resistance of next-generation batteries. We hope that our method will lead to the development of AG13 battery with very high performance in the future, Dr. Higuchi concluded. In addition, a better understanding of the EDL will also help in the development of capacitors, sensors, memories, and communication devices. Let us hope that other scientists will be able to explore this complex phenomenon more easily, leading to continued progress in the field of solid-state ionic devices.
Read recommendations:
Which is safer, ternary lithium battery or lithium iron phosphate battery?
Discussion on the new market of lithium iron phosphate battery
Popular recommendation
602248 polymer battery company
2023-03-22602030 battery wholesaler
2023-03-22601525 polymer battery
2023-03-22521133 battery company
2023-03-22902030 lipo battery company
2023-03-2218650 2500mAh 3.7V
2022-08-19501825 180MAH 3.7V
2023-06-1218650 1500mAh 3.7V
2022-06-20601248 300mAh 3.7V
2022-07-01Coin Battery CR 927
2022-09-27701224 145mAh 3.7V
2022-07-016LR61
2023-02-07Coin Battery LR 621
2022-10-15AA
2022-07-22Ni-MH AAA500mAh 1.2V
2022-07-013.7v 18650 battery pack
2023-06-2518650 battery cell
2023-06-2518650 battery pack Processing
2023-06-2523A battery
2023-06-2518650 battery pack company
2023-06-25Safety Performance Analysis of Polymer Batteries
2025-06-12Battery knowledge popularization
2024-01-19What are the requirements for customizing the general configuration of 18650 lithium batteries?18650
2023-09-04Specific requirements for lithium-ion batteries for equipment
2024-06-25Methods to extend the service life of nickel hydrogen batteries
2024-08-29Detailed explanation of the correct charging method and charging process of electric vehicle lithium
2023-06-15What factors should be considered when using high-temperature batteries?12v deep cycle marine batter
2023-09-09Lithium manganate battery advantage.3.7v 18650 lithium battery
2023-07-14Brief introduction to characteristics, parameters and applications of lithium cobalate battery
2022-11-18How to choose a lithium battery.polymer lithium battery
2023-07-03