Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-03-09 Hits: Popular:AG11 battery
Lithium-ion batteries are increasingly used in mobile phones, notebook computers, digital cameras, electric vehicles, etc. due to their advantages such as high energy density, low self-discharge current, high safety, large current charge and discharge, high number of cycles, and long life. Automobiles, special aerospace, special equipment and other fields.
LiFeP04 basic performance
LiFeP04 basic structure
LiFeP04 charging and discharging principle
The charging and discharging process of lithium iron phosphate battery is carried out between the two phases of LiFePO4 and FePO4, as shown in Figure 2. Its specific mechanism: During the charging and discharging process, Li+ is inserted and detached back and forth between the two electrodes. During charging, Li+ comes out of the positive electrode and migrates to the crystal surface. Under the action of the electric field force, it passes through the electrolyte and then through the separator. It migrates through the electrolyte to the surface of the negative electrode crystal and is embedded in the negative electrode lattice. The negative electrode is in a lithium-rich state. At the same time, electrons flow to the positive electrode through the positive conductor, flow to the current collector of the negative electrode through the external circuit, and then flow to the negative electrode through the negative conductor, so that the charge of the negative electrode reaches balance. After the lithium ions are released from the positive electrode, lithium iron phosphate is converted into iron phosphate; while the discharge process is reversed.
Regarding the electrochemical reaction during the charge and discharge process of lithium iron phosphate, there are three main classic models: the interface migration model proposed by Padhi, the radial model and the Mosaic model proposed by Andersson. Among them, the interface migration model is shown in Figure 3.
When Anderson et al. used neutron powder diffraction to study the first capacity loss of lithium iron phosphate materials, they believed that the remaining unreacted LiFePO4 and FePO4 were the cause of the capacity loss. From this, he proposed a radial model, as shown in Figure 4(a). However, since few reactions occur uniformly, a mosaic model is proposed based on this, as shown in Figure 4(b).
LiFeP04 modification
Due to the poor conductivity and low lithium ion diffusion coefficient of the lithium iron phosphate cathode material itself, domestic and foreign researchers have conducted a lot of research in these aspects and achieved some good results. Its modification research is mainly in three aspects: doping method, coating method and material nanotechnology.
Doping method
The doping method mainly refers to doping some metal ions with good conductivity into the cation positions in the lithium iron phosphate crystal lattice, changing the size of the crystal grains, causing lattice defects of the material, thereby improving the conductivity of electrons in the crystal grains and the lithium The diffusion rate of ions is thereby improved to improve the performance of LiFePO4 materials. At present, the doped metal ions mainly include Ti4+, CO2+, Zn2+, Mn2+, La2+, V3+, and Mg2+.
coating method
Coating carbon on the surface of LiFePO4 materials is an effective method to improve electronic conductivity. Carbon can play the following roles: ① inhibit the growth of LiFePO4 grains and increase the specific surface area; ② enhance inter-particle and surface electrons The conductivity reduces the occurrence of battery polarization; ③ acts as a reducing agent to avoid the generation of Fe and improves product purity; ④ acts as a nucleating agent to reduce the particle size of the product; ⑤ adsorbs and maintains the stability of the electrolyte.
Nanomaterials
Compared with limitations in conductivity, the diffusion of lithium ions in lithium iron phosphate materials is the most important and decisive control step for battery discharge. Due to the olivine structure of LiFePO4, the diffusion channel of lithium ions is one-dimensional, so the particle size can be reduced to shorten the lithium ion diffusion path, thereby improving the lithium ion diffusion rate.
The main advantages of nanomaterials are: ① Nanomaterials have a high specific surface area, which increases the reaction interface and can provide more diffusion channels; ② The material has many defects and micropores, and the theoretical lithium storage capacity is high; ③ Due to the small size of nano-ions The size effect reduces the insertion and extraction depth and stroke of lithium ions; ④ The gaps between the aggregated nanoparticles relieve the stress of lithium ions during deintercalation and improves cycle life; ⑤ The superplasticity and creep properties of nanomaterials make them It has strong volume change tolerance and can lower the glass transition temperature of the polymer electrolyte.
Conclusion
The three modification methods of ion doping, coating, and material nanonization have greatly improved the shortcomings of lithium iron phosphate cathode materials in terms of low conductivity, slow lithium ion diffusion rate, and poor low-temperature discharge performance. Among them, ion doping changes the particle size by doping ions with good conductivity, causing lattice defects of the material, thereby improving the electronic conductivity of the material and the diffusion rate of lithium ions; the coating is mainly carbon coating. Suppressing the growth of LiFeP04 grains increases the specific surface area, thereby enhancing the conductivity between particles and surface electrons; on the one hand, the nanonization of the material increases the specific surface area of the material, providing more diffusion channels for interface reactions, and on the other hand On the one hand, it shortens the ion diffusion distance, reduces the stress on lithium ions when they are deintercalated, and improves the cycle life.
In addition, there are still some shortcomings in the modification of lithium iron phosphate cathode materials. For example, there are still differences in the conductivity and lithium ion diffusion rate of ion doping to improve the material; the preparation process and production cost of nanomaterials are relatively high; in addition, in addition to considering In addition to feasibility studies under laboratory conditions, large-scale industrial production requirements must also be considered, all of which require further research. Therefore, comprehensively improving the comprehensive performance of lithium iron phosphate through the above methods is still one of the main development directions of current and future research and applications in this field.
Read recommendations:
Two common misunderstandings of lithium battery charging methods
Military low-temperature lithium battery packs are the preferred choice for customized power supplie
Last article:button cell battery cr2025.The importance of aluminum-plastic film from the production and packaging
Next article:Nickel Hydride No. 5 battery.Research progress of graphene composite materials in supercapacitors?
Popular recommendation
501825 lipo battery
2023-03-22703048 polymer battery company
2023-03-22AAA Ni-MH battery
2023-03-22li ion 18650 battery pack sales
2023-05-0921700 battery Product
2023-03-22Business laptop bag
2022-09-22No.2 card-mounted carbon battery R14
2023-06-28Bluetooth headset
2022-07-2216340 500MAH 3.7V
2022-10-1514500 850mAh 3.7V
2022-06-20Li-ion 32700 6000mAh 3.2V
2022-06-20Coin Cell BR 1225
2022-10-15LR20
2022-07-01501825 180mAh 3.7V
2022-07-0118650 2500mAh 11.1V
2022-09-3018650 lithium battery 3000mah
2023-06-25NiMH No. 7 battery
2023-06-25602030 polymer battery
2023-06-2518650 battery 10000mah
2023-06-2518650 battery cell
2023-06-25What battery is the best and most durable
2024-03-05Lithium battery safety
2024-08-16CR2032 button cell battery.What are the advantages of polymer lithium batteries
2024-01-03Why does battery capacity decrease quickly at low temperatures?
2024-03-04Management Schemes for Multi-Series Lithium Battery Packs
2025-08-21Nickel metal battery
2023-02-03The benefits of lithium batteries for solar street light storage.Nickel Metal Hydride No. 13 battery
2023-04-06Fully sealed lithium manganese battery.18650 battery lithium ion 2200mah
2023-07-06Lithium battery structure battery cell.802540 polymer battery
2023-06-09Introduce three categories of lithium batteries!.602535 polymer battery
2023-06-26