Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-01-31 Hits: Popular:AG11 battery
LiFePO4, together with ternary materials, has become the main positive electrode material for power batteries due to its excellent volume stability and safety. When studying the charge and discharge behavior of LiFePO4 at low temperatures, Gu Yijie et al. found that its Coulombic efficiency decreased from 100% at 55 ℃ to 96% at 0 ℃ and 64% at -20 ℃, respectively; The discharge voltage decreases from 3.11 V at 55 ℃ to 2.62 V at -20 ℃. Xing et al. modified LiFePO4 using nanocarbon and found that the addition of nanocarbon conductive agents reduced the sensitivity of LiFePO4's electrochemical performance to temperature and improved its low-temperature performance; The discharge voltage of modified LiFePO4 decreased from 3.40 V at 25 ℃ to 3.09 V at -25 ℃, with a decrease of only 9.12%; And its battery efficiency is 57.3% at -25 ℃, higher than 53.4% without nanocarbon conductive agents. Bae et al. analyzed the low-temperature performance of LiFePO4 using numerical simulation methods and pointed out that when the Li+diffusion coefficient is below 0.05 μ When m2/s, it will cause a serious decrease in specific capacity.
In recent years, phosphate based cathode materials have made great progress, and in addition to traditional LiFePO4, similar structured Li3V2 (PO4) 3 has also attracted attention. When studying Li3V2 (PO4) 3/C full batteries, Qiao et al. found that under 0.1C charging and discharging conditions, its discharge capacity was 130 mA · h/g at room temperature, but only 80 mA · h/g at -20 ℃; And its rate performance deteriorates more severely at low temperatures. At -20 ℃, the discharge capacity at 5C is only about 7.69% of that at room temperature, while it can hardly discharge at 10C. Rui et al. compared the low-temperature performance of LiFePO4 and Li3V2 (PO4) 3 and found that at -20 ℃, the capacity retention rate of Li3V2 (PO4) 3 was 86.7%, much higher than that of LiFePO4 (31.5%) under the same conditions. This is because the conductivity of LiFePO4 is one order of magnitude smaller than that of Li3V2 (PO4) 3, resulting in a much greater impedance and polarization effect than Li3V2 (PO4) 3; The activation energy of LiFePO4 system is 47.78 kJ/mol, which is much higher than the 6.57 kJ/mol of Li3V2 (PO4) 3, making it more difficult to remove lithium.
Recently, LiMnPO4 has aroused strong interest among people. Research has found that LiMnPO4 has advantages such as high potential (4.1 V), no pollution, low price, and large specific capacity (170 mAh/g). However, due to the lower ionic conductivity of LiMnPO4 compared to LiFePO4, Fe is often used to partially replace Mn to form LiMn0.8Fe0.2PO4 solid solutions in practice. The LiMn0.8Fe0.2PO4 solid solution obtained by Yang et al. using co precipitation method has a discharge capacity of 142 mAh/g at 0.1C, 25 ℃, and 72.5 mAh/g at -15 ℃. Martha et al. modified LiMn0.8Fe0.2PO4 (25-60 nm) using carbon coating and achieved good results: the discharge specific capacity can reach 160 mA · h/g at 30 ℃ and 0.2C, and 95 mA · h/g at 10C.
With the continuous improvement of application standards, the requirements for lithium-ion batteries have become increasingly strict. Expanding their operating temperature range and improving their low-temperature performance are imperative. From the above research, it can be seen that there is more research on the low-temperature characteristics of LiFePO4 system, while there is relatively less research on the low-temperature characteristics of ternary, Li3V2 (PO4) 3, and high-voltage nickel manganese spinel system cathode materials. Among them, although LiCoO2 was commercialized earlier, its low-temperature performance research is relatively limited due to its gradual withdrawal from the market. Compared to LiFePO4, the low ionic conductivity of LiFePO4 is more sensitive to its constraints at low temperatures, and the modification effect of nanomaterialization and the addition of conductive agents on its low-temperature performance is significant. Compared to the high ionic conductivity of Li3V2 (PO4) 3, V doping may be more beneficial for improving the low-temperature performance of LiFePO4 cathode materials. Compared with high-voltage nickel manganese spinel system and nickel cobalt aluminum ternary system cathode materials, research on their low-temperature performance is relatively limited due to significant high-temperature issues.
Read recommendations:
Home energy storage battery FBC-HS02
National standard for lithium batteries.18650 lithium battery 2600mah
What Are the Lithium Battery Certification Systems
Last article:Lithium battery waterproof grade, IP67 dustproof and waterproof lithium battery pack
Next article:How to distinguish between energy storage lithium batteries and power lithium batteries? Professiona
Popular recommendation
home solar energy storage lithium battery company
2023-05-10602535 polymer battery company
2023-03-22AA Ni-MH battery Vendor
2023-03-22Ni-MH batteries
2023-03-2221700 battery Product
2023-03-22401030 90MAH 3.7V
2023-06-12LR61
2022-11-22Wireless bluetooth headphones
2022-09-2214250 280MAH 3.7V
2022-10-15801752 720mAh 3.7V
2022-06-27Home energy storage battery FBC-HS01
2022-11-08Cabinet type energy storage battery 20KWH
2022-11-08LR20
2022-07-01551235 180MAH 3.7V
2023-06-126LR61
2022-08-1918650 battery 4800mah
2023-06-2518650 battery 10000mah
2023-06-25Carbon battery
2023-06-251.5v dry cell battery
2023-06-2518650 li ion battery
2023-06-25AG Coin battery Common type
2022-06-18Lithium battery fast charge principle
2024-03-14Military rechargeable lithium battery
2024-08-09Graphite negative electrode for lithium batteries
2024-01-10Safety of Shaped Batteries
2025-03-28Causes of lithium battery detachment.18650 lithium battery 3.7 v
2023-07-13Polymer battery.LR936 battery
2023-05-24Lithium battery battery recycling.Nickel Hydride Batteries
2023-08-17How to choose a high-quality 18650 lithium battery?
2022-12-13How to test the safety performance of lithium battery?
2023-02-21