Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-06-14 Hits: Popular:AG11 battery
Researchers use porous aerogel made of reduced graphene oxide as an independent electrode of the 12V23A battery
Swedish researchers use a porous, sponge-like aerogel made of reduced graphene oxide as an independent electrode of the 12V23A battery, thereby improving the utilization rate of lithium-sulfur batteries.
According to foreign media reports, in order to meet the needs of future electrification, new 12V23A battery technologies need to be developed. One of the options is lithium-sulfur batteries, which theoretically have an energy density five times higher than lithium-ion batteries. Recently, researchers at Chalmers University of Technology in Sweden have made a breakthrough in the development of such batteries with the help of graphene sponge and cathode electrolyte.
The researchers' idea is very novel, using a porous, sponge-like aerogel made of reduced graphene oxide as an independent electrode of the 12V23A battery to better utilize sulfur and improve utilization.
Traditional batteries consist of four parts. First, there are two supporting electrodes that cover the active material, namely the anode and cathode. In between them is the electrolyte, usually a liquid, which allows ions to transfer back and forth. The fourth part is the separator, which acts as a physical barrier to prevent the two electrodes from touching while allowing ions to transfer.
Previously, researchers have tried to combine the cathode and electrolyte together into a "catholyte." The concept helps to reduce the weight of the 12V23A battery while making it faster to charge and more powerful. Now, thanks to the development of graphene aerogel, the concept has proven to be effective and promising.
First, the researchers injected a thin layer of porous graphene aerogel into a standard 12V23A battery box. "The aerogel is a long, thin cylinder that is sliced like salami, and then squeezed into the cell. Then a sulfur-rich solution, the catholyte, is added to the cell. The porous aerogel, as a support, absorbs the solution like a sponge," said Carmen Cavallo, from the Department of Physics at Chalmers and lead researcher on the study.
"The porous structure of graphene is key, absorbing a lot of catholyte to get enough sulfur to make the catholyte concept work. Such a semi-liquid catholyte is necessary to not lose any sulfur during the sulfur cycle, because the sulfur is already dissolved in the catholyte, so it doesn't dissolve."
In order for the catholyte to play its role as an electrolyte, part of the catholyte is also added to the separator, which also maximizes the sulfur content of the 12V23A battery.
Currently, most commercial batteries are lithium-ion batteries, but the development of these batteries is approaching the limit, and it is becoming more important to find new chemistries to meet higher requirements. Lithium-sulfur batteries have several advantages, such as higher energy density. Currently, the best lithium-ion batteries on the market have an efficiency of 300 watt-hours per kilogram, and in theory, they can reach a maximum of 350 per kilogram. In theory, the energy density of lithium-sulfur batteries is about 1,000 to 1,500 watt-hours per kilogram.
"In addition, sulfur is cheap, abundant and more environmentally friendly," said Aleksandar Matic, professor at the Department of Physics at Chalmers University of Technology and leader of the research. In addition, lithium-ion batteries generally contain fluorine, which is harmful to the environment, while lithium-sulfur batteries do not."
The problem with lithium-sulfur batteries so far is that they are not stable enough, resulting in a short cycle life. But when the researchers at Chalmers University of Technology tested the new 12V23A battery prototype, they found that the new 12V23A battery still retained 85% of its capacity after 350 cycles.
The new design avoids the two main problems in the degradation process of sulfur-lithium batteries, one is the loss of sulfur dissolving into the electrolyte, and the other is the "shuttle effect" of sulfur molecules migrating from the cathode to the anode. In this design, the impact of such problems is greatly reduced.
However, the researchers point out that the technology still has a long way to go before it can fully realize its market potential. "Since the production method of this 12V23A battery is different from most normal batteries, new production processes need to be developed to commercialize this 12V23A battery," said Aleksandar Matic.
Read recommendations:
LR1121 battery.Series and parallel connection method for lithium batteries
The Cycle Life of Lithium - Ion Batteries
Popular recommendation
801752 battery Processing
2023-03-2218650 battery pack sales
2023-05-09551521 polymer battery
2023-03-22602535 battery wholesaler
2023-03-22home solar energy storage lithium battery price
2023-05-1018650 7200MAH 3.7V
2022-07-29Alkaline AA Battery LR06
2022-11-11Lithium Battery LQ-1236
2022-08-19LR03
2022-07-0118650 2600mAh 3.7V
2022-06-20602030 300mAh 3.7V
2022-08-19Ni-MH AA1500mAh 1.2V
2022-07-01801520 180mAh 3.7V
2022-08-19LR14
2023-02-07Lithium-ion battery GN200 60000mAh
2022-08-191.2V NiMH battery
2023-06-25102450 polymer battery
2023-06-2518650 battery bulk
2023-06-25AAA NiMH batteries
2023-06-25LR6 battery
2023-06-25lithium 3400mah 3.7v 18650 battery.Comparison between lithium iron phosphate and ternary materials
2023-12-20Introduction to lithium iron phosphate batteries
2024-07-12The Heart of Lithium Battery Portable Electronic Devices
2024-06-26Methods to extend the service life of lithium batteries
2024-03-21Power battery manufacturers explain the correct use of high Lithium battery of electric vehicles.LR4
2023-06-16What are the disadvantages of lithium iron phosphate batteries?photovoltaic energy storage battery s
2023-05-17Lithium battery structure battery cell.802540 polymer battery
2023-06-09Advantages and disadvantages of lithium iron phosphate/lithium cobalate/lithium manganate/ternary li
2022-11-18Voltage and capacity of lithium iron phosphate battery
2022-12-07What are the differences between energy storage lithium batteries and power lithium batteries.househ
2023-05-06