
Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery

3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .

Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales

Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc

Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.

Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc

Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.

release time:2024-06-14 Hits: Popular:AG11 battery
Researchers use porous aerogel made of reduced graphene oxide as an independent electrode of the 12V23A battery
Swedish researchers use a porous, sponge-like aerogel made of reduced graphene oxide as an independent electrode of the 12V23A battery, thereby improving the utilization rate of lithium-sulfur batteries.
According to foreign media reports, in order to meet the needs of future electrification, new 12V23A battery technologies need to be developed. One of the options is lithium-sulfur batteries, which theoretically have an energy density five times higher than lithium-ion batteries. Recently, researchers at Chalmers University of Technology in Sweden have made a breakthrough in the development of such batteries with the help of graphene sponge and cathode electrolyte.
The researchers' idea is very novel, using a porous, sponge-like aerogel made of reduced graphene oxide as an independent electrode of the 12V23A battery to better utilize sulfur and improve utilization.
Traditional batteries consist of four parts. First, there are two supporting electrodes that cover the active material, namely the anode and cathode. In between them is the electrolyte, usually a liquid, which allows ions to transfer back and forth. The fourth part is the separator, which acts as a physical barrier to prevent the two electrodes from touching while allowing ions to transfer.
Previously, researchers have tried to combine the cathode and electrolyte together into a "catholyte." The concept helps to reduce the weight of the 12V23A battery while making it faster to charge and more powerful. Now, thanks to the development of graphene aerogel, the concept has proven to be effective and promising.
First, the researchers injected a thin layer of porous graphene aerogel into a standard 12V23A battery box. "The aerogel is a long, thin cylinder that is sliced like salami, and then squeezed into the cell. Then a sulfur-rich solution, the catholyte, is added to the cell. The porous aerogel, as a support, absorbs the solution like a sponge," said Carmen Cavallo, from the Department of Physics at Chalmers and lead researcher on the study.
"The porous structure of graphene is key, absorbing a lot of catholyte to get enough sulfur to make the catholyte concept work. Such a semi-liquid catholyte is necessary to not lose any sulfur during the sulfur cycle, because the sulfur is already dissolved in the catholyte, so it doesn't dissolve."
In order for the catholyte to play its role as an electrolyte, part of the catholyte is also added to the separator, which also maximizes the sulfur content of the 12V23A battery.
Currently, most commercial batteries are lithium-ion batteries, but the development of these batteries is approaching the limit, and it is becoming more important to find new chemistries to meet higher requirements. Lithium-sulfur batteries have several advantages, such as higher energy density. Currently, the best lithium-ion batteries on the market have an efficiency of 300 watt-hours per kilogram, and in theory, they can reach a maximum of 350 per kilogram. In theory, the energy density of lithium-sulfur batteries is about 1,000 to 1,500 watt-hours per kilogram.
"In addition, sulfur is cheap, abundant and more environmentally friendly," said Aleksandar Matic, professor at the Department of Physics at Chalmers University of Technology and leader of the research. In addition, lithium-ion batteries generally contain fluorine, which is harmful to the environment, while lithium-sulfur batteries do not."
The problem with lithium-sulfur batteries so far is that they are not stable enough, resulting in a short cycle life. But when the researchers at Chalmers University of Technology tested the new 12V23A battery prototype, they found that the new 12V23A battery still retained 85% of its capacity after 350 cycles.
The new design avoids the two main problems in the degradation process of sulfur-lithium batteries, one is the loss of sulfur dissolving into the electrolyte, and the other is the "shuttle effect" of sulfur molecules migrating from the cathode to the anode. In this design, the impact of such problems is greatly reduced.
However, the researchers point out that the technology still has a long way to go before it can fully realize its market potential. "Since the production method of this 12V23A battery is different from most normal batteries, new production processes need to be developed to commercialize this 12V23A battery," said Aleksandar Matic.
Read recommendations:
Popular recommendation
601435 polymer battery company
2023-03-223.20V Lithium Polymer Battery maker
2023-03-22602030 lipo battery company
2023-03-2212v lifepo4 battery pack
2023-05-09801538 battery Manufacturing
2023-03-223.2V 200Ah
2022-10-12Lithium Battery GN60120
2022-08-19801538 480mAh 3.7V
2022-06-27Ni-MH AAA500mAh 1.2V
2022-07-01522749 880mAh 3.7V
2022-08-19LR20
2022-08-19LR20
2022-11-22Lithium Battery LQ12-200
2022-08-19R6P
2022-07-01Coin Battery CR 2450
2022-09-27402030 lipo battery
2023-06-2518650 battery 2500mah
2023-06-2518650 1800mah battery
2023-06-25Ni-MH battery pack
2023-06-2518650 battery bulk
2023-06-25Compatibility of Lithium Battery Chargers
2024-10-17Advantages of Environmentally Friendly Lithium-Ion Batteries
2024-11-27Future Development of Aluminum-Ion Batteries
2025-07-24Energy Density of Lithium - Ion Batteries
2025-02-253.2v 25ah lifepo4 battery cell.About 18650 cylindrical lithium battery
2023-11-13How to test the safety performance of lithium battery?
2023-02-21Introduction to the carbon and aluminum foil in the battery.3.2 volt 100ah lifepo4 battery
2023-03-28Introduction to lithium battery module
2022-12-10Advantages and disadvantages of ternary lithium battery
2022-11-26What are the types of low-temperature batteries used according to their environment?3.7 volt 18650 l
2023-09-08
360° FACTORY VR TOUR