18650 rechargeable battery lithium 3.7v 3500mah
CH
About Us
Company Profile Development History Sales Network Partner Social Responsibility
Products
Rechargeable Battery Battery Packs Energy Storage Battery Primary Battery Handicraft Article
Subsidiary Company
SINO TECHNOLOGY SUNBEAM GREEN POWER DATAPOWER SEONG-HEE STD
Honor
Qualification Certificate Patent Certificate Honor Certificate
R&D
R&D Center Test Center
News
Company News Industry News
Contact Us
Other information
product
polymer lithium battery Primary battery Rechargeable Battery LR03 alkaline battery
18650 rechargeable battery lithium 3.7v 3500mah
18650 rechargeable battery lithium 3.7v 3500mah
polymer lithium battery

Primary battery

Rechargeable Battery

LR03 alkaline battery

26650 battery

release time:2024-06-14 Hits:     Popular:AG11 battery

Research on technologies to improve 26650 battery storage performance

 

In the past decade, the demand for high-energy-density materials has been growing to power emerging electric vehicles and mobile electronics, and high-performance rechargeable batteries have also attracted attention. To promote the commercialization of 26650 battery-sulfur batteries, researchers have reported a variety of strategies to improve the capacity utilization of sulfur and prevent the loss of polysulfide; however, it is still a huge challenge to increase the energy density of 26650 battery-sulfur batteries (Li-S) to practical application levels because the electronic and ionic conductivity of sulfur and 26650 battery sulfide in high-load electrodes that meet practical application levels is low. As a highly conductive active material that can replace sulfur, Li-Se batteries with selenium (Se) as the positive electrode material have better reaction activity; however, Se has a low mass specific capacity and is expensive, which limits the application range of Li-Se batteries. In order to achieve the complementary advantages of the electrochemical properties of S and Se, S-Se solid solution (SexSy) is considered to be a very promising 26650 battery storage material. A series of SexSy-based positive electrode materials have shown attractive energy storage advantages. However, similar to the S positive electrode, the soluble intermediates of the SexSy positive electrode can also cause rapid battery capacity decay. Inspired by the chemical adsorption mechanism of 26650 battery-sulfur batteries, some polar materials may also effectively inhibit the dissolution of polysulfide ions/polyselenium ions in the SexSy cathode. Recently, it has been reported that some metal oxides/nitrides/sulfides can be used as host materials to effectively solve the problem of polysulfide dissolution in 26650 battery-sulfur batteries; among them, CoS2 materials can be used as effective host materials for 26650 battery-sulfur batteries due to their unique physical and chemical properties. They can not only provide strong chemical adsorption for 26650 battery polysulfide, but also kinetically promote the reduction reaction of 26650 battery polysulfide. Recently, Professor Lou Xiongwen of Nanyang Technological University published an article entitled "A Freestanding Selenium Disulfide Cathode based on Cobalt Disulfide-Decorated Multichannel Carbon Fibers with Enhanced 26650 battery Storage Performance" in Angewandte Chemie-International Edition, reporting a CoS2 nanoparticle-modified lotus root-type carbon fiber network (CoS2@LRC) as a host material for SeS2 to improve the storage performance of 26650 battery. The overall electrode is composed of three-dimensional cross-linked multi-channel carbon fibers, which can not only accommodate a high content of SeS2 (70wt%), but also ensure the rapid transmission of electrons and ions, thereby achieving a high capacity utilization rate of 1015mAh/g at a current density of 0.2A/g. [Graphic Introduction] Figure 1. Schematic diagram of the synthesis process

 

a) Schematic diagram of the synthesis process of CoS2@LRC; b) Schematic diagram of the advantages of CoS2@LRC/SeS2 compared to LRC/SeS2. Figure 2. XRD, FESEM, TEM and TGA characterization

 

a, e, i) XRD spectra; b, c, f, g, j, k, l) FESEM characterization images; d, h, n, o, p) TEM characterization images; m) TGA curves; a-d) Co(Ac)2/PAN/PS; e-h) Co@LRC; i-p) CoS2@LRC. Figure 3. Characterization of CoS2@LRC/SeS2 electrode

 

a-c) FESEM characterization of CoS2@LRC/SeS2 electrode, the inside of Figure a is the photo of CoS2@LRC/SeS2 electrode, the inside of Figure b is the cross-sectional FESEM image of CoS2@LRC/SeS2 electrode; d) TGA curve of CoS2@LRC/SeS2 electrode; e) TEM image of CoS2@LRC/SeS2 electrode; f) Element mapping corresponding to the TEM image of CoS2@LRC/SeS2 electrode. Figure 4. Electrochemical performance test of CoS2@LRC/SeS2 electrode

 

a) Voltage distribution curve of CoS2@LRC/SeS2 electrode at a current density of 1A/g; b) Comparison of cycle performance of CoS2@LRC/SeS2 electrode and LRC/SeS2 electrode; c) Voltage distribution curve of CoS2@LRC/SeS2 electrode at different current densities; d) Rate performance of CoS2@LRC/SeS2 electrode at different current densities; d) Long cycle life of CoS2@LRC/SeS2 electrode at a current density of 5A/g. [Summary] This article reports a self-supporting CoS2@LRC/SeS2 electrode with good integration characteristics, which has a high content of electroactive SeS2, multifunctional CoS2 nanoparticles and a conductive LRC network structure. Specifically, SeS2 is more reactive than S; the conductive LRC network further ensures the capacity utilization and the CoS2 nanoparticles ensure good cycle stability. Due to the above advantages, the CoS2@LRC/SeS2 cathode material has a high discharge capacity, with a capacitance of up to 1015 mAh/g at a current density of 0.2 A/g (2.3 mg/cm2). It also has excellent rate performance and a long cycle life of more than 400 cycles.


Read recommendations:

903242 2500MAH 3.7V

Lithium battery structure and voltage, capacity composition method

Battery specific energy and specific power.18650 battery 3.7v 2000mah

26650 battery wholesale

18650 battery 3.7v 3500mah

Last article:32700 battery

Next article:21700 battery

Popular recommendation

solar energy storage battery manufacture

2023-03-22

18650 lithium ion battery cell

2023-03-22

industrial energy storage battery manufacturer

2023-05-10

lifepo4 battery calb 200ah 3.2v

2023-03-22

601848 battery direct sales

2023-03-22

601848 500MAH 3.7V

2023-06-10

Lithium Battery GN6020

2022-07-29

Coin Battery LR 521

2022-10-15

Home energy storage battery FBC-HS02

2022-11-08

LR20

2022-11-22

Electric vehicle lithium battery GN-24100-FAP

2022-09-27

Coin Battery CR 1616

2022-09-27

Snow board shoulder strap set

2022-09-22

LR61

2022-11-16

Li-ion 18650 3000mAh 3.7V

2022-06-20

AG6 battery

2023-06-25

AG8 battery

2023-06-25

AG5 battery

2023-06-25

AAA NiMH batteries direct sales

2023-08-04

li ion 18650 battery pack maker

2023-06-25

Polymer Battery Structure Optimization Design

2025-06-13

Intelligent Charging Protection Schemes for Lithium Batteries

2025-08-12

How to Repair and Charge Lithium-ion Batteries

2024-11-26

Open circuit voltage and resistance of lithium batteries.3.7 volt 18650 lithium battery

2023-07-07

6F22 carbon battery.Operation process of iron lithium batteries

2023-12-15

18650 lithium battery blast cause.CR2320 battery

2023-06-07

How about understanding the market demand for lithium-ion batteries?18650 lithium battery cells

2023-09-08

The composition and function of lithium battery protection board.energy storage system lithium batte

2023-05-12

Do you want to know what the general knowledge of low-temperature batteries includes?602030 lipo bat

2023-08-19

Charging and discharging strategy of lithium battery

2023-02-01
360° FACTORY VR TOUR
lithium ion battery 18650 priceWhatsapp
lithium ion battery 18650 price

lithium ion battery 18650 priceTel
+86 19925278095

lithium ion battery 18650 priceEmail
admin@sino-techgroup.com

TOP