
Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery

3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .

Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales

Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc

Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.

Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc

Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.

release time:2024-01-04 Hits: Popular:AG11 battery
Hydrogen is one of the hot technologies in today's society. After mastering the preparation methods of gaseous, liquid and solid states, how to prepare "metallic hydrogen" has always been a difficult problem that the scientific community is working hard to tackle.
I believe friends who have been paying attention to cutting-edge materials science will still remember that Harvard University published an article in Science in 2017 claiming to have prepared "metallic hydrogen", which caused a sensation around the world, but later the "metallic hydrogen" sample mysteriously disappeared.
Recently, the scientific research team of Shandong University has made a major breakthrough in the research of metallic hydrogen, which has attracted great attention around the world.
So what is "metallic hydrogen"? Why has it received so much attention?
According to reports, the team of Professor Zhao Mingwen of Shandong University proposed to use the high mechanical strength of carbon nanotubes to prepare and protect quasi-one-dimensional "metallic hydrogen" in carbon nanotubes at relatively "low" pressure, and thus developed corresponding theoretical model.
This theoretical result was recently published in Nano Letters (a top journal in Region 1, IF=12.712).
Since Wigner and Huntington predicted the existence of "metallic hydrogen" under high pressure in 1935, "metallic hydrogen" has been a coveted goal and is known as the "Holy Grail" of high-pressure physics.
An important property of "metallic hydrogen" is its superconducting properties. Theoretical calculations show that at 450 GPa (1 GPa = 10,000 times atmospheric pressure), "metallic hydrogen" has superconducting properties close to room temperature (TC ~ 242K). However, such high pressure is a great challenge for experiments, making experimental demonstration difficult.
In 2017, a research team from Harvard University successfully created an ultra-high pressure of 495 GPa in the laboratory, reporting the first real "metallic hydrogen" that caused a global sensation. Unfortunately, the sample of "metallic hydrogen" disappeared inexplicably later. .
Therefore, how to obtain "metallic hydrogen" under relatively "low" pressure has become an important research direction at present.
Figure 1 Schematic diagram of the diamond high-pressure anvil compressing molecular hydrogen gas reported by Harvard. At higher pressures, molecular hydrogen transforms into atomic hydrogen, as shown in the inset on the right.
Recently, Professor Xia Yueyuan, Professor Zhao Mingwen of Shandong University and their collaborators proposed a new method for preparing "metallic hydrogen": taking advantage of the high mechanical strength of carbon nanotubes to form ultra-high density quasi-uniform ions inside the carbon nanotubes. Dimension "Metallic Hydrogen".
Carbon nanotubes can not only protect the fleeting "metallic hydrogen", but also effectively reduce the critical pressure of hydrogen metallization, achieving the metallization and superconducting properties of hydrogen at a relatively "lower" pressure.
This result shows that molecular dynamics simulations based on the first principles of quantum mechanics show that quasi-one-dimensional hydrogen bound to carbon nanotubes can become a metal at 1.635 GPa (i.e. 1.635 million times atmospheric pressure), and its superconducting critical The temperature (TC ~ 225 K) is also close to room temperature.
Based on Eliashberg's superconductivity theory, the research team developed a corresponding theoretical model and successfully explained the superconducting properties of quasi-one-dimensional "metallic hydrogen".
This theoretical achievement provides a new solution for the experimental preparation and research of normal-temperature superconductor "metallic hydrogen".
Among the research results, Professor Xia Yueyuan and Professor Zhao Mingwen from the School of Physics of Shandong University are the first author and corresponding author respectively, Professor Ma Yuchen from the School of Chemistry and Chemical Engineering is the co-corresponding author, and Shandong University is the only completion unit.
Read recommendations:
Application of Lithium Ion Battery Technology
Long-Lasting Lithium Batteries
Last article:R03 Carbon battery.Discussion on the application of lossless equalizing relay for lithium battery pa
Next article:CR1620 battery.Progress in research on lithium-sulfur batteries with high volume and weight energy d
Popular recommendation
battery 18650 genuine
2023-03-22602248 polymer battery
2023-03-22NiMH No.19 batteries Processing
2023-03-22household energy storage battery manufacturer
2023-05-10801520 battery wholesaler
2023-03-2218650 1800mAh 3.7V
2022-06-20LR14
2022-07-01Coin Battery LR 936
2022-10-15Coin Battery LR 41
2022-10-15602248 600mAh 3.7V
2022-07-01102540 1100MAH 3.7V
2023-06-12903242 2500mAh 3.7V
2022-08-23Coin Battery LR 927
2022-10-15Portable mini fan
2022-09-22R14
2023-02-181.5v Dry Battery
2023-06-251.2V Ni-MH Battery
2023-06-25aa alkaline battery
2023-06-25CR2450 battery
2023-06-25lifepo4 18650 battery
2023-06-25CR2320 battery.This is the real reason why electric vehicle batteries are becoming increasingly less
2023-11-06Lithium ion batteries
2024-05-15Second-Life Utilization of Liquid Lithium-Ion Batteries
2025-07-10Lithium - Ion Battery High - Voltage Technology and Its Industrial Development Status
2025-07-25Lifespan of Cylindrical Lithium - ion Batteries
2025-03-14Precautions for nickel -hydride battery maintenance.702535 polymer battery
2023-05-18Advantages of power batteries.LR1130 battery
2023-06-13Is solid -state battery twice the ordinary battery?42v battery pack lithium ion direct sales
2023-04-07LR754 battery.How to control the quality of lithium iron phosphate batteries?
2023-10-13Ternary polymer lithium battery.102450 polymer battery
2023-09-25
360° FACTORY VR TOUR