Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-10-17 Hits: Popular:AG11 battery
Why can't the maximum voltage of 2025 button cell battery exceed 4.2V?
The parameter that describes the energy storage capacity of 2025 button cell battery is energy density, which is approximately equivalent to the product of voltage and lithium battery capacity. In order to effectively increase the storage capacity of lithium batteries, people generally use the method of increasing battery capacity to achieve the goal. However, due to the nature of the raw materials used, the capacity increase is always limited, so increasing the voltage value becomes another way to improve the storage capacity of lithium batteries. As we all know, the nominal voltage of lithium batteries is 3.6V or 3.7V, and the maximum voltage is 4.2V. So why can't the voltage of lithium batteries achieve a greater breakthrough? In the final analysis, this is also determined by the material and structural properties of lithium batteries.
The voltage of lithium batteries is determined by the electrode potential. Voltage is also called potential difference or potential difference, which is a physical quantity that measures the energy difference generated by the different potentials of charges in an electrostatic field. The electrode potential of lithium ions is about 3V, and the voltage of lithium batteries varies with different materials. For example, the rated voltage of a general lithium-ion battery is 3.7V, and the fully charged voltage is 4.2V; while the rated voltage of a lithium iron phosphate battery is 3.2V, and the fully charged voltage is 3.65V. In other words, the potential difference between the positive and negative electrodes of a practical lithium-ion battery cannot exceed 4.2V, which is a requirement based on materials and safety of use.
If the Li/Li+ electrode is used as the reference potential, μA is the relative electrochemical potential of the negative electrode material, μC is the relative electrochemical potential of the positive electrode material, and the electrolyte potential interval Eg is the difference between the lowest electron unoccupied energy level and the highest electron occupied energy level of the electrolyte. Then, the three factors that determine the maximum voltage value of a lithium battery are μA, μC, and Eg.
The difference between μA and μC is the open circuit voltage (maximum voltage value) of a lithium-ion battery. When this voltage value is within the Eg range, the electrolyte can be guaranteed to work normally. "Normal operation" means that the lithium-ion battery moves back and forth between the positive and negative electrodes through the electrolyte, but does not undergo redox reactions with the electrolyte, thereby ensuring the stability of the battery structure. There are two forms of abnormal electrolyte operation caused by the electrochemical potential of the positive and negative electrode materials:
1. When the electrochemical potential of the negative electrode is higher than the lowest unoccupied energy level of the electrolyte, the electrons of the negative electrode will be captured by the electrolyte, so the electrolyte is oxidized, and the reaction products form a "solid-liquid interface layer" on the surface of the negative electrode material particles, which may cause the negative electrode to be damaged.
2. When the electrochemical potential of the positive electrode is lower than the highest electron-occupied energy level of the electrolyte, the electrons in the electrolyte will be captured by the positive electrode, and thus oxidized by the electrolyte, and the reaction products form a "solid-liquid interface layer" on the surface of the positive electrode material particles, which may cause the positive electrode to be damaged.
However, the possibility of damage to the positive or negative electrode is prevented by the existence of the "solid-liquid interface layer", which prevents the further movement of electrons between the electrolyte and the positive and negative electrodes, and protects the electrode materials instead. That is to say, the "solid-liquid interface layer" with a lighter degree is "protective". The premise of this protectiveness is that the electrochemical potential of the positive and negative electrodes can slightly exceed the Eg interval, but not too much. For example, the reason why most of the negative electrode materials of 2025 button cell battery are graphite is that the electrochemical potential of graphite relative to the Li/Li+ electrode is about 0.2V, which slightly exceeds the Eg range (1V~4.5V), but because of the "protective" "solid-liquid interface layer", the electrolyte is not further reduced, thus stopping the continued development of the polarization reaction. However, the 5V high-voltage positive electrode material exceeds the Eg range of the current commercial organic electrolyte by too much, so it is very easy to be oxidized during the charge and discharge process. As the number of charge and discharge increases, the capacity decreases and the life is shortened.
Now it is understood that the open circuit voltage of 2025 button cell battery is selected as 4.2V because the Eg range of the existing commercial lithium battery electrolyte is 1V~4.5V. If the open circuit voltage is set to 4.5V, it may increase the power output of the lithium battery, but it also increases the risk of overcharging the battery. There is a lot of information on the harm of overcharging, so I won't say more here.
According to the above principle, if people want to increase the energy density of lithium batteries by increasing the voltage value, there are only two ways to go. One is to find an electrolyte that can match the high-voltage positive electrode material, and the other is to perform protective surface modification on the battery.
Read recommendations:
Future Development of Lithium Battery Diaphragm Materials
Last article:button cell battery cr2025
Popular recommendation
12v 18650 battery pack
2023-05-09portable energy storage battery direct sales
2023-05-10551235 battery Vendor
2023-03-22401030 lipo battery company
2023-03-22501825 lipo battery company
2023-03-22801620 180MAH 3.7V
2023-06-10Home energy storage battery FBC-HS03
2022-11-04701224 145mAh 3.7V
2022-08-19Lithium-ion battery GN500
2022-08-2418650 1500mAh 3.7V
2022-08-19LR03
2022-11-16LR14
2022-07-01Ni-MH AA700mAh 1.2V
2022-07-016LR61
2022-08-19Coin Battery LR 721
2022-10-15button battery 2032
2023-06-2518650 battery pack 3.7v
2023-06-2518650 battery pack 3.7v
2023-06-25battery 18650
2023-06-259V carbon battery
2023-06-25Compatibility of Lithium Battery Chargers
2024-10-17Lithium battery or lead-acid battery which is better
2024-04-02Lithium - ion Batteries for Smart Wearable Devices
2024-11-22The influence of charge transfer resistance on low-temperature performance.LR44 battery
2024-07-03Why do express delivery companies stop transporting lithium batteries
2023-11-01Lithium ion polymer battery.501825 battery
2023-05-23Aging Procedure for Lithium Ion Batteries.solar energy storage system battery pack lithium
2023-10-07Correct maintenance methods for lead-acid batteries.18650 battery 3.7v 2000mah
2023-09-21What should I pay attention to when using a lithium battery in RV
2023-02-22What problems should be paid attention to when assembling lithium batteries
2023-02-22