Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2023-11-21 Hits: Popular:AG11 battery
High-voltage cathode materials for lithium-ion batteries have been a hot topic of research in recent years, and the corresponding high-voltage electrolyte has also become a focus of research. Designing and preparing new lithium-ion batteries with better performance, higher energy and voltage is a research hotspot in the power supply field. In recent years, high-voltage cathode materials represented by LiNi0.5Mn1.5O4 and LiCoPO4 have developed rapidly, while the matching electrolytes have lagged behind. Therefore, the development of a 5V electrolyte system is a key issue that urgently needs to be solved.
Traditional electrolyte
1. Carbonate solvents
Traditional carbonate solvents have always been regarded as the best choice for general-purpose electrolyte solvents due to their high conductivity, good solubility of lithium salts, and ability to form a stable solid electrolyte interface film (SEI film) on the surface of the negative electrode. However, the applicability of traditional carbonates in high-voltage battery systems is not good. This is because the oxidation potential of traditional carbonate solvents is low and it is easy to oxidize and decompose prematurely at high potentials. In addition, the moisture content in the electrolyte of lithium-ion batteries has always been considered a key criterion for determining battery quality. High-voltage electrolytes have higher requirements for moisture. If the water content in the electrolyte is slightly higher, the electrolyte's performance will be greatly reduced. Oxidation resistance function.
2. Ionic liquid
Ionic liquids are salts that are completely composed of cations and anions, are liquid near room temperature, and can conduct electricity. Ionic liquids share many common advantages such as low volatility, low flammability, high ionic conductivity and wide electrochemical window. Due to these characteristics, ionic liquids have been extensively studied in recent years and used as new electrolytes to improve the electrochemical and thermal stability properties of lithium-ion batteries under high capacity and high voltage. Studies have shown that ionic liquids of pyrrole and piperidine bis(trifluoromethylsulfonyl)imide salts are more suitable for use as 5V high-voltage electrolyte materials than conventional LiPF6-based electrolyte systems.
However, ionic liquids have very obvious shortcomings:
(1) The preparation cost is high and it cannot be used on a large scale in industry;
(2) Although ionic liquids have high ionic conductivity, their conductivity is still low compared to liquid electrolytes;
Low temperature high energy density 18650 3350mAh-40℃ 0.5C discharge capacity ≥60%
Charging temperature: 0~45℃ Discharge temperature: -40~+55℃ Specific energy: 240Wh/kg -40℃ Discharge capacity retention rate: 0.5C Discharge capacity ≥ 60%
Click for details
(3) Ionic liquids generally have high viscosity, which is not conducive to high-rate charging and discharging of lithium batteries.
New liquid electrolyte
The development of new electrolyte systems is the most concerned direction in the study of lithium-ion high-voltage electrolytes, which mainly include: fluorinated solvents, nitrile compounds, sulfone compounds and other new solvent compounds.
1. Fluorinated solvent
Because fluorine atoms have strong electronegativity and weak polarity, fluorinated solvents have high electrochemical stability. The researchers studied a series of fluorinated organic carbonate solvents and found that after introducing fluorine element into the carbonate solvent, the antioxidant function of the fluorine-containing carbonate will be significantly improved. The oxidation potentials of fluorinated ethylene carbonate, methyl-2,2,2-trifluoroethyl carbonate and ethyl-2,2,2-trifluoroethyl carbonate are much higher than those of unfluorinated ethylene carbonate. (EC), ethyl methyl carbonate (EMC) and ethyl carbonate (DEC). However, as the number of hydrogen atoms replaced by fluorine atoms increases, the solubility of LiPF6 in the solvent will be greatly reduced.
2. Nitrile solvents
In the process of studying electric double layer capacitors, researchers first discovered that glutaronitrile and adiponitrile have an antioxidant potential as high as 8.3V, and their electrochemical windows are wider than all aprotic solvents. However, nitrile solvents have poor compatibility with graphite negative electrodes. As cycles increase, the internal resistance of the battery also increases, greatly reducing the cycle performance of the battery. The use of EC and lithium bisoxalate difluoroborate (LiBOB) can form a stable SEI film on the surface of the graphite negative electrode. Adding EC and LiBOB as additives to the electrolyte can effectively improve the poor compatibility between nitrile solvents and graphite negative electrodes. One question.
3. Sulfone solvents
Sulfone solvents are a solvent that researchers are currently focusing on to replace traditional carbonates. Sulfone solvents are widely used as electrolytes in different fields, such as lithium-ion batteries, lithium-sulfur batteries and lithium-air batteries. The oxidation resistance potential of methyl ethyl sulfone (EMS) and methoxyethyl methyl sulfone exceeds 5.8V, and they have good compatibility with Mn-based positive electrodes. However, their compatibility with graphite negative electrodes is very poor, so they cannot Used in batteries with graphite as the negative electrode.
4. Other high voltage systems
LiBOB and lithium oxalate difluoroborate (LiODFB) are electrolyte lithium salts that can form a stable SEI film on the surface near graphite in a pure propylene carbonate (PC) solvent system. They are common negative electrode surface components like VC. Membrane additives. The study found that compared with TMS and LiPF6, TMS has very good compatibility with LiBOB and LiODFB. The electrolyte composed of TMS, LiBOB, and LiODFB can not only form a stable SEI film, but also effectively reduce the internal resistance of the battery. In recent years, LiBOB's ability to protect high-voltage cathode materials on the surface of the cathode has attracted more and more attention. For example, adding LiBOB to the electrolyte that matches traditional high-voltage cathode materials can enhance the cycle performance of the battery. . By studying the phenomenon of SEI film formed by LiBOB on the surface of the cathode, it was found that adding LiBOB can effectively protect the oxidative decomposition of the electrolyte. At the same time, through theoretical calculations, the oxidation and decomposition mechanism of LiBOB on the electrode surface was studied: LiBOB ring opening causes pairwise polymerization to form a protective film, and the B atoms exposed due to ring opening on the outside can attract PF-6 and F- to combine with it. , and then achieve the purpose of preventing the electrolyte from decomposing.
In general, high-voltage electrolytes for lithium-ion batteries have attracted the attention of many researchers and have become the most important research direction for lithium-ion battery electrolytes. Different high-voltage electrolyte systems have their own advantages and disadvantages. Due to the high cost of development and use of new solvent systems, there is currently no new solvent that can completely replace carbonate-based solvents; if the production and use costs can be significantly reduced and the compatibility with negative electrode materials can be improved, new solvent system electrolytes will have It is hoped that it can completely replace carbonate-based solvents. Therefore, more detailed research is needed. As the research continues to deepen, the new solvent system electrolyte will definitely have wider application prospects.
Read recommendations:
Five advantages of lithium iron phosphate battery
Can lithium ion battery pack be used in high/low temperature environment.solar energy storage lifepo
Last article:lifepo4 battery 48v powerwall.UPS technology will have the following six major development trends
Next article:3.2v 200ah lifepo4 battery.Whether fast charging has an impact on the battery remains to be verified
Popular recommendation
Ni-MH batteries maker
2023-03-2218650 battery 3.7v 2200mah
2023-03-22lithium 18650 li ion battery
2023-03-22connector for energy storage battery wholesale
2023-05-1014500 battery company
2023-03-22Lithium Battery GN60100
2022-08-19Coin Cell BR 1225
2022-10-15Lithium-ion battery GN200
2022-07-29LR14
2022-07-013.2V 280Ah
2022-10-126LR61
2023-02-07Lithium Battery GN4825
2022-08-19601248 300mAh 3.7V
2022-07-01602248 600mAh 3.7V
2022-08-19186095 6000mAh 7.4V
2022-08-23button battery 2025
2023-06-25102450 lipo battery
2023-06-25CR2032 battery
2023-06-25602248 lipo battery
2023-06-2518650 battery 3.7v 1800mah
2023-06-25Current capability and current balance are critical
2024-01-24The Best Choice for Portable Power Supplies
2024-07-09Fast - charging Technology of Lithium - ion Batteries
2025-03-04Want to know where is the advantage of ternary lithium batteries?solar energy storage lithium ion ba
2023-03-10CR2320 battery.This is the real reason why electric vehicle batteries are becoming increasingly less
2023-11-06Lithium batteries can already solve the problem of safe battery life using "ice".702535 po
2023-10-07Introduce the maintenance of lithium-ion batteries in electric vehicles.18650 battery rechargeable
2023-09-123.7v 18650 lithium battery.Advantages and disadvantages of 18650 battery
2023-10-13Electrolyte - solid state battery&jelly battery
2022-12-28Development prospect of lithium battery
2022-11-28