Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-04-26 Hits: Popular:AG11 battery
Principle of flatulence of lithium titanate battery
Academics believe that the reason why lithium titanate/NCM battery gas is more serious than graphite/NCM is that lithium titanate cannot form an SEI film on its surface to inhibit its reaction with the electrolyte like graphite anode system batteries. During the charge and discharge process, the electrolyte is always in direct contact with the surface of Li4Ti5O12, causing the electrolyte to continue to reduce and decompose on the surface of the Li4Ti5O12 material. This may be the root cause of the bloating of the Li4Ti5O12 battery.
The important components of gas are H2, CO2, CO, CH4, C2H6, C2H4, C3H8, etc. When lithium titanate is immersed in the electrolyte alone, only CO2 appears. After it is made into a battery with NCM materials, the gases that appear include H2, CO2, CO and a small amount of gaseous hydrocarbons. After the battery is made into a battery, only CO2 appears during the cycle. H2 will only appear during charging and discharging, and the content of H2 in the gas that appears at the same time exceeds 50%. This indicates that H2 and CO gases will appear during the charge and discharge process.
LiPF6 has the following equilibrium in the electrolyte:
PF5 is a strong acid that easily causes the decomposition of carbonates, and the amount of PF5 increases as the temperature increases. PF5 helps the electrolyte decompose and produce CO2, CO and CxHy gases. According to relevant studies, the appearance of H2 comes from trace amounts of water in the electrolyte, but generally the water content in the electrolyte is about 20×10–6, which contributes very little to the production of H2. Wu Kai of Shanghai Jiao Tong University used graphite/NCM111 as the battery in his experiment, and concluded that the source of H2 is the decomposition of carbonate under high voltage.
2. Suppression of flatulence in lithium titanate ion batteries
At present, there are three main solutions to suppress the flatulence of lithium titanate batteries. First, the processing and modification of LTO anode materials, including improving preparation methods and surface modifications; second, developing electrolytes that match the LTO anode, including Additives and solvent systems; third, improve battery process technology.
(1) Improve the purity of raw materials and prevent the introduction of impurities during the manufacturing process. Impurity particles will not only catalyze the classification of electrolytes to produce gas, but will also greatly reduce the performance, cycle life and safety of lithium-ion batteries. Therefore, the introduction of impurities into the battery must be reduced as much as possible.
(2) The surface of lithium titanate is covered with nanocarbon particles. The apparent reason for the formation of gas in the negative electrode LTO is that the SEI film is formed slowly and less, resulting in the flatulence phenomenon that will accompany it throughout its life. Research has found that establishing an isolation layer between lithium titanate and the electrolyte interface (such as constructing a nanocarbon coating layer on the surface of lithium titanate (LTO/C), synergizes with the solid electrolyte interface (SEI) film formed on the coating layer - On the one hand, it reduces the contact area between the LTO material and the electrolyte and prevents the occurrence of gas.
On the other hand, the carbon itself can form an SEI film to make up for the shortcomings of LTO, and can also enhance the conductivity of the LTO material. The above research results are of great significance in solving the gas generation behavior of lithium titanate batteries, and can promote the design, large-scale application and development of high-energy lithium titanate power lithium batteries.
(3) Improve electrolyte functionality. Regarding the development of new electrolytes, many patents tend to use additives to promote the formation of a dense SEI film on the surface of LTO to suppress the occurrence of side reactions at the interface between LTO and electrolyte. Certain electrolyte additives, such as fluorinated carbonates and phosphates, are beneficial to forming a stable SEI film on the surface of the positive electrode, reducing the dissolution of metal ions on the surface of the positive electrode, thereby reducing the occurrence of gas.
Film-forming additives can also inhibit gas production. The added film-forming additives include lithium borate, succinonitrile or adiponitrile, and compounds with R-CO-CH=N2 structure (where R is a C1 to C8 alkyl group or phenyl group ), cyclic phosphate esters, phenyl derivatives, phenylacetylene derivatives, LiF additives, etc. These film-forming additives are beneficial to the formation of SEI film on the surface of LTO, inhibiting the occurrence of flatulence to a certain extent.
(4) Positive electrode surface coating. Covering the surface of the positive electrode with a stable compound, such as alumina, can effectively inhibit the dissolution of metal ions. However, an overly complex coating layer will inhibit the deintercalation of lithium ions and affect the electrochemical performance of the material.
(5) Improve battery production technology. When producing batteries, it is necessary to control the environmental humidity and the introduction of moisture during operation. It can be seen from the cause of the gas that the moisture in the air reacts with the cathode material to form lithium carbonate and accelerates the decomposition of the electrolyte to generate carbon dioxide. In addition, the lithium titanate material itself is extremely water-absorbent (it needs to be operated in a dry room). After the negative electrode piece absorbs moisture, it will react with PF5 that appears from the reversible decomposition of the electrolyte to generate H2, so strict moisture control is crucial. .
Read recommendations:
Specific requirements for lithium-ion batteries for equipment
Popular recommendation
18650 battery 1800 mah
2023-03-22li ion 18650 battery pack direct sales
2023-05-09801738 lipo battery
2023-03-22601435 lipo battery company
2023-03-22connector for energy storage battery wholesaler
2023-05-10402427 260mAh 3.7V
2022-07-0118650 1200mAh 3.7V
2022-08-19Business laptop bag
2022-09-2214500 450MAH 3.7V
2022-10-1518650 2400mAh 3.7V
2022-08-19Coin Battery CR 2025
2022-09-27Lithium Battery LQ-1212
2022-08-193.2V 230Ah
2022-10-12L822 32A/29A
2022-10-0918650 1500mAh 3.7V
2022-06-20li ion 18650 battery pack manufacture
2023-06-25Nickel Metal Hydride No. 5 battery
2023-06-25CR927 battery
2023-06-25CR1212 battery
2023-06-2518650 3.7v battery
2023-06-25Application field of lithium iron phosphate battery
2024-03-203.2v 20ah lifepo4 battery.Lithium iron batteries
2023-12-12Battery knowledge popularization
2024-01-19What are the possible reasons that may shorten the lifespan of batteries?
2024-09-03Polymer lithium battery and lithium battery difference
2024-03-15The 6 major advantages of electric vehicle lithium battery lithium battery wholesalers will explain.
2023-06-14How can soft pack batteries achieve technological breakthroughs?Nickel Metal Hydride No. 5 battery
2023-08-02At this stage, the focus of nickel -hydride battery research.photovoltaic energy storage battery dir
2023-04-15Lithium battery structure and voltage, capacity composition method
2023-02-08Several misconceptions about lithium battery maintenance!1800mah 18650 battery
2023-08-25