Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2023-11-03 Hits: Popular:AG11 battery
According to foreign media reports, researchers from the Karlsruhe Institute of Technology (KIT) in Germany have proposed a new high-entropy material suitable for energy storage applications. They reported in the paper that they used a recently designed polycationic transition metal-based high-entropy oxide as a precursor and LiF or NaCl as a reactant to prepare polyanionic and polycationic compounds using simple mechanochemical methods to generate lithiation or sodium Chemical materials. Lithium-containing entropy-stable fluorooxy compound (Lix (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)OFx), working potential 3.4Vvs. Li+/Li can be used as cathode active material. Unlike traditional (non-entropically stable) oxyfluoride compounds, this new material benefits from entropic stabilization, exhibits stronger lithium storage properties, changes the constituent elements in an unprecedented way, and improves cycle performance. The concept of entropy stabilization also applies to sodium-containing oxychloride with a rock salt structure, paving the way for the development of post-lithium battery technologies. High-entropy materials (HEMs) have attracted widespread attention due to their novel, unexpected and unprecedented properties in many different application fields. HEM is based on the premise of introducing high configuration entropy to stabilize the single-phase structure. A large number of high-entropy compounds have been synthesized and disclosed so far, including carbides, diborides, nitrides, sulfur compounds and oxides, and have been widely used in fields such as thermoelectricity, dielectrics and lithium-ion batteries. The recently emerged high-entropy material, called high-entropy oxide (HEO), was introduced in 2015 by Christina M. First proposed by Rost et al. However, so far, there are no literature reports on HEM compounds containing multiple anions. Stable high configurational entropy effects, caused only by cations in the crystal structure, since the contribution of anionic sites is zero. Therefore, the preparation of polyanionic and polycationic single-phase structural materials with obvious signs of entropy stabilization is of great significance, especially considering that the configurational entropy gain will be greater than that of transition metal-based HEO systems. The KIT paper is the first report on polyanionic and polycationic high-entropy oxyhalides and their applications in electrochemical energy storage. The researchers used a HEO based on polycationic transition metals (that is, only oxygen ions occupy the anionic sites) as a precursor to introduce additional halide ions (X) and alkali metal ions to generate polyanionic and polycationic rock salt-type compounds. (HEOX). Monovalent fluorine is introduced into the HEO anion lattice occupied by divalent oxygen, and the charge is compensated by adding monovalent lithium (or sodium) to the cation lattice. Since the ion radii of fluorine and oxygen are similar, this substitution does not cause significant strain in the single-phase rock salt structure. By adding multiple anions into an entropy-stable polycationic compound, researchers have discovered for the first time that not only the cations change, but also the anions, while maintaining the single-phase rock salt structure. These compounds constitute a new class of entropy-stable materials in which the anionic lattice promotes configurational entropy formation, thereby obtaining additional structural stabilization gains. Through this method, a fluorine-oxygen-based cathode active material with a rock salt structure was successfully synthesized, which is suitable for next-generation lithium-ion battery applications. It is worth mentioning that entropic stabilization can significantly improve cycle performance. In addition, this approach can reduce toxic and expensive elements in the battery cathode without significantly affecting energy density. In summary, the concept of polyanionic and polycationic high-entropy compounds will bring unprecedented new energy storage materials.
Read recommendations:
Wet recovery of lithium iron phosphate batteries.R03 Carbon battery
Last article:402030 battery.Key factors in the commercial development of energy storage and the role of BMS
Next article:502030 battery.Graphene urgently needs to seek basic research breakthroughs for high-end application
Popular recommendation
14500 battery Factory
2023-03-22connector for energy storage battery Product
2023-05-10household energy storage lithium battery wholesaler
2023-05-10battery 18650 rechargeable Product
2023-03-22energy storage battery for solar system maker
2023-05-10Lithium Battery GN6020
2022-08-19Business laptop bag
2022-09-22Coin Battery CR 2330
2022-09-2718650 2500mAh 11.1V
2022-09-30Coin Battery CR 2032
2022-09-27601248 300mAh 3.7V
2022-08-19Snow board shoulder strap set
2022-09-22Li-ion 21700 5000mAh 3.7V
2022-06-20No.7 card-mounted carbon battery R03P
2023-06-28Electric vehicle lithium battery GN-24100-FAP
2022-09-2718650 lithium ion battery 3.7v
2023-06-2518650 battery pack 3.7v
2023-06-25CR1632 battery
2023-06-2518650 battery pack price
2023-06-253.7v 3000mah 18650 battery
2023-06-25Principle and application method of polymer lithium battery
2024-04-09How to improve the energy density of lithium battery...
2022-06-13What Materials are Used in Lithium Batteries?
2024-11-08Production Process of Cylindrical Lithium - Ion Batteries
2025-02-27Capacity of Cylindrical Lithium Batteries
2025-04-17Instructions for use of carbon coated aluminum foil for lithium battery
2022-11-15Introduction to the Good Advantages of Polymer Batteries in Daily Use.102450 polymer battery
2023-08-18Test method for open circuit voltage of lithium batteries
2022-12-30How to charge lithium iron phosphate batteries correctly?502030 battery
2023-08-19Lithium battery core technology
2023-08-01