Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-09-28 Hits: Popular:AG11 battery
High Energy Density Lithium Battery Technology
High energy density lithium battery technology is currently a research hotspot and key development direction in the field of lithium batteries. The following are some related technologies:
1. Improvement of positive electrode material :
-High nickel ternary materials: High nickel ternary materials (such as NCM811, NCA, etc.) have high specific capacity and high voltage platform, which can significantly improve the energy density of lithium batteries. By optimizing the synthesis process of materials, improving their crystal structure and surface properties, the performance stability and safety of high nickel ternary materials can be enhanced. For example, high nickel ternary materials with uniform particle size and high crystallinity can be prepared by coprecipitation, sol gel and other synthesis methods; By means of surface coating, doping, and other methods, the cyclic performance and thermal stability of materials can be improved.
-Rich lithium manganese based materials: Rich lithium manganese based materials have ultra-high specific capacity, theoretically reaching over 300mAh/g, making them a very promising high-energy density positive electrode material. However, rich lithium manganese based materials have problems such as low initial charge discharge efficiency and voltage decay. The current research focus is on improving the performance of lithium rich manganese based materials by optimizing their composition, structure, and preparation processes. For example, methods such as element doping and surface modification can improve the electrochemical performance of lithium rich manganese based materials; By compounding with other materials such as ternary materials, carbon materials, etc., the conductivity and stability of the material can be improved.
2. Innovation in Negative Electrode Materials :
-Silicon based negative electrode material: The theoretical specific capacity of silicon is as high as 4200mAh/g, far higher than traditional graphite negative electrode materials (372mAh/g), making it an ideal negative electrode material for improving the energy density of lithium batteries. However, silicon undergoes significant volume expansion (about 300%) during the charging and discharging process, leading to electrode structure damage and affecting the cycling performance of the battery. To solve this problem, researchers have adopted various methods, such as preparing silicon nanowires, silicon carbon composite materials, silicon oxygen composite materials, etc. These materials can effectively alleviate the volume expansion of silicon and improve the cycling performance and stability of negative electrode materials. For example, silicon nanowires have one-dimensional nanostructures that can provide space for the volume expansion of silicon while improving the conductivity of the material; Silicon carbon composite materials combine silicon with carbon materials, utilizing the good conductivity and flexibility of carbon to suppress the volume expansion of silicon.
-Metal lithium negative electrode material: Metal lithium is an ideal negative electrode material with the highest theoretical specific capacity (3860mAh/g) and the lowest electrode potential. However, metallic lithium is prone to forming lithium dendrites during the charging and discharging process, leading to battery short circuits and posing safety hazards. At present, researchers use methods such as solid-state electrolytes, three-dimensional current collectors, and surface modifications to suppress the growth of lithium dendrites and improve the safety and cycling performance of metal lithium negative electrode materials. For example, solid electrolytes can prevent the formation of lithium dendrites in liquid electrolytes, improving the safety of batteries; Three dimensional current collectors can provide a uniform electric field for the deposition of metallic lithium and suppress the growth of lithium dendrites.
3. Optimization of Electrolytes:
-Solid state electrolyte: Solid state electrolyte has high safety, good mechanical strength, and high ion conductivity, and is one of the key technologies for achieving high energy density lithium batteries. At present, researchers are developing various types of solid electrolytes, such as polymer solid electrolytes, inorganic solid electrolytes, composite solid electrolytes, etc. Polymer solid electrolytes have good flexibility and processability, but low ionic conductivity; Inorganic solid electrolytes have high ionic conductivity and mechanical strength, but are brittle; Composite solid electrolytes combine the advantages of polymers and inorganic solid electrolytes, and have good comprehensive performance. For example, combining polymers with inorganic solid electrolytes can improve the ion conductivity and mechanical strength of solid electrolytes while maintaining good flexibility.
-High voltage electrolyte: In order to improve the energy density of lithium batteries, it is necessary to increase the operating voltage of the battery. However, traditional electrolytes can decompose at high voltages, affecting the performance and safety of batteries. Therefore, developing high-voltage electrolytes is an important way to improve the energy density of lithium batteries. High voltage electrolytes require high oxidation stability, good conductivity, and low viscosity. At present, researchers are improving the high-voltage performance of electrolytes by using new solvents, additives, and other methods. For example, using fluorinated solvents, sulfone solvents, and other solvents with high oxidation stability can improve the high pressure resistance of electrolytes; Adding additives such as ethylene carbonate (VC) and fluorinated ethylene carbonate (FEC) can form a stable SEI film on the electrode surface, improving the cycling performance and safety of the battery.
Read recommendations:
Lithium battery of fishing machine
The difference between lithium polymer batteries and lithium batteries.solar energy battery storage
Last article:R6 Carbon battery
Next article:NiMH battery packs
Popular recommendation
551235 battery wholesaler
2023-03-22801738 lipo battery
2023-03-223.2v 200ah lifepo4 battery
2023-03-22AA Ni-MH battery Manufacturing
2023-03-22803040 battery Manufacturing
2023-03-22Alkaline C Battery LR14
2022-11-11LR20
2022-08-1918650 1800mAh 3.7V
2022-08-19D USB 1.5V 6000mWh
2023-06-29Cabinet type energy storage battery 15KWH
2022-11-0818650 1000mAh 3.7V
2022-06-20Cabinet type energy storage battery 10KWH
2022-11-08802540 800mAh 3.7V
2022-08-196F22
2023-03-27Ni-MH AA1500mAh 1.2V
2022-07-011.5v Dry Battery
2023-06-25AA Ni-MH batteries
2023-06-25LR6 battery
2023-06-2518650 battery pack wholesale
2023-06-25LR936 battery
2023-06-25Selection of Single - Use Lithium Batteries
2025-04-16Testing standards for marine batteries
2024-08-15CR1225 battery.Introduction and Development Status of Lithium Carbonate
2023-12-19Polymer lithium battery and lithium battery difference
2024-03-15What are the advantages of thick electrode design in the application of lithium-ion batteries?
2024-09-11What are the advantages of industrial lithium batteries?
2023-02-23National standard for lithium batteries.18650 lithium battery 2600mah
2023-07-10When selecting unmanned ship batteries, the following factors need to be considered
2023-08-01LR1121 battery.Series and parallel connection method for lithium batteries
2023-10-11Why 18650 lithium batteries can become an important component of modern mobile power sources.26650 b
2023-06-25