Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-03-26 Hits: Popular:AG11 battery
Comparison of charging methods for four AAA Ni-MH batteries
Lithium-ion batteries are an ideal power source due to their high operating voltage, small size, light weight, no memory effect, no pollution, small self-discharge, and long cycle life. In actual use, in order to obtain a higher discharge voltage, at least two single lithium-ion batteries are generally connected in series to form a lithium-ion battery pack. At present, lithium-ion batteries... Lithium-ion batteries are an ideal power source due to their high operating voltage, small size, light weight, no memory effect, no pollution, small self-discharge, and long cycle life. In actual use, in order to obtain a higher discharge voltage, at least two single lithium-ion batteries are generally connected in series to form a lithium-ion battery pack. At present, lithium-ion battery packs have been widely used in various fields such as notebook computers, electric bicycles and backup power supplies.
Therefore, how to use the lithium-ion battery pack properly when charging is particularly critical. Here are several commonly used charging methods for lithium-ion battery packs and the most suitable charging method in my opinion as follows:
1 Ordinary series charging
At present, lithium-ion battery packs are generally charged in series, mainly because the series charging method has a simple structure, low cost, and is easier to implement. However, due to the differences in capacity, internal resistance, attenuation characteristics, self-discharge and other performance between single lithium-ion batteries, when charging lithium-ion battery packs in series, the single lithium-ion battery with the smallest capacity in the battery pack will It is fully charged first, but at this time, other batteries are not fully charged yet. If the batteries continue to be charged in series, the fully charged single lithium-ion battery may be overcharged.
Overcharging of lithium-ion batteries will seriously damage the performance of the battery, and may even cause explosions and personal injuries. Therefore, in order to prevent overcharging of single lithium-ion batteries, lithium-ion battery packs are generally equipped with a battery management system (Battery Management System, Referred to as BMS), each single lithium-ion battery is protected from overcharging through the battery management system. During series charging, if the voltage of a single lithium-ion battery reaches the overcharge protection voltage, the battery management system will cut off the entire series charging circuit and stop charging to prevent this single battery from being overcharged, which will cause other problems. Lithium-ion batteries cannot be fully charged.
After years of development, lithium iron phosphate power batteries can basically meet the requirements of electric vehicles, especially pure electric cars, due to their high safety, good cycle performance and other advantages, and the technology has basically met the requirements for mass production. condition. However, the performance of lithium iron phosphate batteries is somewhat different from other lithium-ion batteries, especially its voltage characteristics are different from lithium manganese oxide batteries, lithium cobalt oxide batteries, etc. The following is a comparison of the charging curves of lithium iron phosphate and lithium manganate batteries and the corresponding relationship between lithium ion deintercalation:
It is easy to see from the curve in the figure above that when the lithium iron phosphate battery is almost fully charged, the lithium ions are almost completely deintercalated from the positive electrode to the negative electrode. The battery terminal voltage will rise rapidly and the charging curve will rise. This will cause the battery to be very unstable. It is easy to reach the overcharge protection voltage. Therefore, the phenomenon that some batteries in the lithium iron phosphate battery pack are not fully charged is more obvious than the lithium manganate battery pack.
In addition, although some battery management systems have a balancing function, due to considerations such as cost, heat dissipation, reliability, etc., the balancing current of the battery management system is generally much smaller than the current of series charging, so the balancing effect is not very obvious, and there may also be Some single batteries are not fully charged, which is more obvious for lithium-ion battery packs that require large current charging, such as lithium-ion battery packs for electric vehicles.
For example, 100 lithium-ion batteries with a discharge capacity of 100Ah are connected in series to form a battery pack. However, if 99 single-unit lithium-ion batteries are charged with 80Ah before the group is formed, and the other single-unit lithium-ion battery is charged with 100Ah, the battery pack will When this battery pack is charged in series, the single lithium-ion battery with a charge of 100Ah will be fully charged first, thus reaching the overcharge protection voltage. In order to prevent this single lithium-ion battery from being overcharged, the battery management system will The entire series charging circuit is cut off, which prevents the other 99 batteries from being fully charged, so the discharge capacity of the entire battery pack is only 80Ah.
Generally, when battery manufacturers test the capacity before leaving the factory, they first charge the single battery with constant current, then charge with constant voltage, and then discharge it with constant current to measure the discharge capacity. Generally, the discharge capacity is approximately equal to the constant current charging capacity plus the constant voltage charging capacity. In the actual series charging process of the battery pack, there is generally no constant voltage charging process for the single battery, so the constant voltage charging capacity will not be available, and the battery pack capacity will be smaller than the single battery capacity. Generally, the smaller the charging current, the smaller the constant-voltage charging capacity ratio, and the smaller the battery pack's capacity loss. Therefore, a battery management system and charger have been developed to coordinate and cooperate with series charging.
2Battery management system and charger coordinate and cooperate in series charging
The battery management system is the device that has the most comprehensive understanding of the performance and status of the battery. Therefore, establishing a connection between the battery management system and the charger allows the charger to understand the battery information in real time, thereby more effectively solving the battery charging problem. Some problems occurred, the schematic diagram is as follows.
The principle of the battery management system and charger coordinating the charging mode is: the battery management system monitors the current status of the battery (such as temperature, single cell voltage, battery operating current, consistency, temperature rise, etc.) and uses these parameters Estimate the maximum allowable charging current of the current battery; during the charging process, the battery management system and the charger are connected through communication lines to achieve data sharing. The battery management system transmits parameters such as total voltage, maximum single cell voltage, maximum temperature, temperature rise, maximum allowable charging voltage, maximum allowable single cell voltage, and maximum allowable charging current to the charger in real time, and the charger can adjust the battery according to the battery The management system provides information to change its own charging strategy and output current.
When the maximum allowable charging current provided by the battery management system is higher than the designed current capacity of the charger, the charger charges according to the designed maximum output current; when the battery voltage and temperature exceed the limits, the battery management system can detect it in real time and notify the charger in time. The machine changes the current output; when the charging current is greater than the maximum allowable charging current, the charger starts to follow the maximum allowable charging current, thus effectively preventing the battery from overcharging and extending the battery life. Once a fault occurs during the charging process, the battery management system can set the maximum allowable charging current to 0, forcing the charger to shut down to avoid accidents and ensure charging safety.
In this charging mode, it not only improves the management and control functions of the battery management system, but also enables the charger to change the output current in real time according to the status of the battery, thereby preventing overcharging of all batteries in the battery pack and optimizing charging. The actual discharge capacity of the battery pack is also greater than the ordinary series charging method, but this method still cannot solve the problem of some batteries in the battery pack being undercharged, especially when the battery pack has a large number of strings, poor battery consistency, and a large charging current. Big time.
3 Parallel charging In order to solve the problem of overcharging and undercharging of some single cells in the battery pack, a parallel charging method has been developed. The schematic diagram is as follows.
Figure 6 Schematic diagram of parallel charging
However, the parallel charging method requires the use of multiple low-voltage, high-current charging power sources to charge each single battery. It has the disadvantages of high charging power cost, low reliability, low charging efficiency, and thick connection wire diameter. Therefore, there is currently no large-scale charging method. The range uses this charging method.
4 series high current charging plus small current parallel charging
Since the above three charging methods all have certain problems, I have developed a charging method that is most suitable for high-voltage battery packs, especially electric vehicle battery packs, which uses a battery management system and a charger to coordinate and cooperate with series high-current charging and constant charging. Voltage current limiting parallel small current charging mode, the schematic diagram is shown below.
Figure 7 Schematic diagram of battery management system and charger coordinating series charging and parallel charging
This charging method has the following characteristics:
(1) Since the BMS of this system has the function of preventing overcharging, it ensures that the battery will not have overcharging problems. Of course, if the BMS cannot communicate and control the parallel charging power supply, since the constant voltage value of the parallel charging power supply is generally the same as the voltage value of the single lithium-ion battery in the lithium-ion battery pack when it is fully charged, there will be no overcharging problem. .
(2) Since parallel charging is possible, there is no need for a balancing circuit with low reliability and relatively high cost. The charging effect is better than the series charging method with only a balancing circuit, and its maintenance and management are also simple and easy.
(3) Since the maximum current of series charging is much greater than the current of parallel charging (generally more than 5 times), it can ensure that a higher capacity is charged in a shorter time, thereby exerting the maximum effect of series charging.
(4) The sequence of series charging and parallel charging and the number of parallel charging power sources during charging can be flexibly controlled, and charging can be performed at the same time; parallel charging can be carried out after series charging is completed; a parallel charging power supply can also be used according to the voltage in the battery pack. In this case, the battery with the lowest voltage is charged in turn.
(5) With the development of technology, the parallel charging power supply can be a non-contact charging power supply (wireless charging power supply) or solar battery power supply, making parallel charging simple.
(6) When there are a large number of single lithium-ion batteries in the lithium-ion battery pack, the lithium-ion battery pack can be divided into several lithium-ion battery pack modules. For each lithium-ion battery pack module, the BMS and charger are used to coordinate and connect in series. Charging is carried out by combining current charging with constant voltage and current limiting parallel small current charging.
Its main purpose is to reduce the shortcomings of the poor charging effect of the coordinated charging method of BMS and charger when there are a large number of batteries connected in series in the battery pack, so that the consistency between single cells is relatively poor. Coordinate with the charging mode for maximum effect.
This method is particularly suitable for high-voltage battery packs that are battery systems composed of quickly replaceable low-voltage (e.g. 48V) battery module systems, so that they can be charged or repaired in parallel at battery replacement stations or charging stations (general users usually charge There is no need to charge in parallel), and a dedicated person will sort and regroup according to the actual situation.
In short, this charging method that uses the battery management system and charger to coordinate with series high-current charging and constant voltage current limiting parallel low-current charging can effectively solve the problems of overcharging and undercharging that are prone to occur when lithium-ion battery packs are charged in series. , and can avoid the problems of high cost, low reliability, low charging efficiency, thick connection wire diameter and other problems of parallel charging charging power supply. It is currently the most suitable charging method for high-voltage battery packs, especially electric vehicle battery packs.
Read recommendations:
18650 lithium battery cells.What should we pay attention to in the winding process of 18650 lithium
Last article:Ni-MH battery packs
Next article:NiMH No.7 batteries
Popular recommendation
601525 lipo battery
2023-03-223.2v lifepo4 battery 320ah
2023-03-22602248 polymer battery company
2023-03-22AAA Ni-MH batteries manufacture
2023-03-22AA Ni-MH batteries direct sales
2023-03-22Ni-MH AA800mAh 1.2V
2022-07-013.2V 230Ah
2022-10-12Coin Battery CR 1220
2022-09-27Colorful cup humidifier
2022-07-22R6P
2022-08-19Home energy storage battery FBC-HS02
2022-11-0818650 1500mAh 3.7V
2022-06-20R03P
2023-02-18Lithium Battery GN4825
2022-08-19502030 200mAh 3.7V
2022-08-1918650 lithium battery 2600mah
2023-06-2518650 lithium 3.7 battery
2023-06-2518650 battery 3500mah
2023-06-252000mah 18650 battery
2023-06-2518650 3500mah battery
2023-06-25Advantages of lithium iron phosphate battery
2022-12-07LR6 alkaline battery.Outdoor mobile portable UPS energy storage power supply solution
2024-01-08How to reduce the consumption of platinum metal in fuel power lithium battery
2022-11-04902030 lipo battery.On the Self Protection Function of Lithium Batteries
2023-10-27Lithium battery specific energy and specific power
2024-04-13How to solve safety faults of lithium-ion batteries.402030 polymer battery
2023-08-21the lithium iron phosphate battery need.lithium battery for solar energy storage system maker
2023-05-06Lithium iron phosphate (LiFePO4) battery
2022-11-2118650 battery lithium ion 2200mah.Research and decomposition of high-temperature lithium manganese b
2023-10-14Overview of ternary lithium battery
2022-12-17