Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2023-07-04 Hits: Popular:AG11 battery
A schematic structure of a rechargeable battery system is assembled. The water rechargeable lithium battery (ARLB) uses a coated lithium metal as the anode and lithium manganate as the cathode, and its CV curve has a scanning speed of 0.1 mV/s. There are two pairs of redox peaks, located at 4.14/3.80 and 4.28/3.93 V, respectively. From the above figure, the Redox is as follows: during the charging process, only one is in the anodic reaction. The transportation of Li+ions from aqueous electrolytes through the coating layer reduces the deposition of Li metal on the surface of the lithium metal. Two reactions were carried out on the cathode: the cations of Li+were de embedded into the sites from tetrahedron 8a and Octahedron 16c, and then two pairs of redox peaks were generated, similar to the behavior of organic electrolytes. During the discharge process, a reverse process occurs. Therefore, there are two pairs of redox peaks in the CV curve of our ARLB. This indicates that the lithium metal with a chemical coating of 0.5mol.L-1 Li2SO4/LiMn2O4 on our battery can generate an average output voltage of more than 3.8 V in a rechargeable battery with an aqueous electrolyte, which is much higher than the theoretical decomposition voltage of water, which is 1.229 V.
Figure 3: (1) Schematic diagram: The rechargeable lithium aqueous solution battery (ARLB) we designed uses a covered lithium metal as the anode, lithium manganate as the cathode, and 0.5mol.L-1 Li2SO4 aqueous solution as the electrolyte. (b) The scanning rate of the ARLB is 0.1 mV s-1. The potential variation of Li+ions in our design of ARLB is shown in Figure 4. Lithium metal has the lowest oxidation Reduction potential, -3.05 V (relative to Standard hydrogen electrode, SHE), and reacts rapidly with water to produce hydrogen and LiOH. In addition, the potential of lithium metal is much lower than that of hydrogen evolution, and hydrogen will be easily produced. However, in our example, the coating of lithium metal is very stable in aqueous electrolyte and without hydrogen evolution. The main reason is that Li+ions can cross the potential range of hydrogen evolution through the coating and directly reach the lithium metal. This intersection is similar to the potential changes between the two sides of the community membrane24. The sharp decrease in the potential of Li+ions in the coating ranges from positive to negative. The outer coating of Li+ions has a higher potential and is very stable. Li+ions do not come into contact with water inside the coating and cannot provide water for the production of hydrogen to the electron atom Li. By the way, water and protons cannot enter the internal coating, and they cannot reach a sufficiently low potential to produce hydrogen gas. As for the LiMn2O4 positive electrode, it is stable because its potential lies below water, which is much more favorable for oxygen evolution than for hydrogen evolution.
On the basis of the discharge voltage and capacity of Li metal anode and LiMn2O4 positive electrode, the ARLB discharge energy density based on the total mass of electrode material is 446 W/h kg-1, which is much higher than those previously reported in ARLBs (30-45 W/kg-1) 14, 15, 16, 17, 18, 19, 20, 21. Of course, it is higher than that used for lithium/M+aqueous solutions and other liquid flow batteries 3, 4, 5, 9, 12. Based on the manufacturing technology of half the energy density of lithium-ion batteries, almost available 7, 14 can be made, which means that the actual energy density is above 220 watt hours per kilogram-1, which is higher than about 80%, corresponding to the Li ion battery for electric vehicles (120 watt hours per kilogram-1 is C/organic electrolyte/LiMn2O4) 6, 7. This high energy density indicates that pure electric vehicles can run 200 to 400 kilometers on a single charge.
Read recommendations:
Is the lithium iron phosphate battery resistant to low temperature?48v 200ah home energy storage bat
Last article:Phosphoric acid fuel cell.LR936 battery
Next article:Water lithium battery.LR754 battery
Popular recommendation
14500 battery direct sales
2023-03-22703048 battery
2023-03-22903242 battery pack company
2023-05-09Ni-MH battery packs
2023-03-22Battery Packs direct sales
2023-05-09402030 180MAH 3.7V
2023-06-12LR20
2022-07-0118650 800mAh 3.7V
2022-08-19802540 800mAh 3.7V
2022-08-19Coin Battery CR 1225
2022-09-27602535 500MAH 3.7V
2023-06-10R6P
2023-03-27R6P
2022-08-19Lithium Battery GN72100
2022-08-19Rack-mounted energy storage battery GN-2560
2022-09-27CR2032 button cell batteries
2023-06-2518650 battery 3500mah lithium
2023-06-2518650 battery rechargeable
2023-06-25NiMH battery pack
2023-08-04button cell battery cr1620
2023-06-25Advantages and disadvantages of lithium manganese acid batteries
2024-03-22Basic requirements for military lithium batteries
2024-07-22Affects the service life of ternary lithium batteries
2024-05-14How to deal with the ignition problem of lithium ion batteries?CR1130 battery
2023-06-05603450 polymer battery.What are the advantages and disadvantages of ternary lithium batteries?
2023-10-20Common power batteries and their characteristics.photovoltaic energy storage battery maker
2023-05-17What are the power batteries?lithium battery for solar energy storage system company
2023-05-06Storage methods for lithium batteries.6LR61 alkaline battery
2023-09-22Cylindrical, square and flexible lithium batteries
2022-12-12The Future Prospects of Lithium Battery Recycling.18650 lithium ion battery cell
2023-09-08