18650 rechargeable battery lithium 3.7v 3500mah
CH
About Us
Company Profile Development History Sales Network Partner Social Responsibility
Products
Rechargeable Battery Battery Packs Energy Storage Battery Primary Battery Handicraft Article
Subsidiary Company
SINO TECHNOLOGY SUNBEAM GREEN POWER DATAPOWER SEONG-HEE STD
Honor
Qualification Certificate Patent Certificate Honor Certificate
R&D
R&D Center Test Center
News
Company News Industry News
Contact Us
18650 rechargeable battery lithium 3.7v 3500mah
18650 rechargeable battery lithium 3.7v 3500mah

Other information

Home  >  Other information

CR2016 battery

release time:2024-09-11 Hits:     Popular:AG11 battery

  What is the capacity degradation mechanism of thick electrodes in lithium-ion batteries?

  The thick electrode design of lithium-ion batteries is aimed at increasing the energy density of the battery to meet the needs of high range new energy vehicles. However, during long-term cyclic use, the electrochemical performance of thick electrodes will significantly deteriorate, mainly due to the following mechanisms:

  1. Lithium ion transport limitation: In thick electrodes, lithium ions need to migrate over long distances inside the electrode, which leads to limitations in lithium ion transport. Especially on the side of the electrode close to the current collector, due to the slower migration rate of lithium ions, the electrochemical reaction rate is lower, while on the side close to the electrode liquid, due to the higher concentration of lithium ions and electrons, the reaction can proceed better.

  2. Electronic transmission limitation: In addition to lithium ion transmission, the transmission of electrons in the electrode may also become a limiting factor. On the side of the electrode near the current collector, electron migration is hindered, resulting in a decrease in the electrochemical reaction rate in that area.

  3. SOC non-uniformity: Due to the non-uniformity of SOC (State of Charge) caused by material transport, thick electrodes undergo a relatively high proportion of electrochemical reactions near the top of the diaphragm, while reactions are scarce near the bottom of the current collector. This non-uniformity intensifies with cycling, leading to a decline in battery performance.

  4. Formation of current hotspots: In thick electrodes, due to the non-uniformity of SOC, current hotspots may form in certain areas of the electrode. The high current density in these areas can damage the active material, causing cracks or irreversible phase transitions.

  5. Particle rupture and interface side reactions: High current density may also form a large gradient of solid-phase lithium ion concentration distribution in secondary particles, generating a stress field that leads to particle breakage, exposure of new interfaces, side reactions, and formation of thick organic layers at new interfaces, causing impedance increase and ultimately resulting in battery failure.

  6. Electrolyte decomposition: Electrolyte decomposition is also an important factor leading to battery capacity degradation. The decomposition of electrolyte may lead to the loss of active materials, thereby affecting the capacity and cycling stability of the battery.

  7. The impact of overcharging cycles: Overcharging cycles can exacerbate capacity degradation and safety issues in lithium-ion batteries. Overcharging can lead to electrolyte decomposition, loss of active materials, and growth of lithium dendrites, all of which have a negative impact on the performance and lifespan of the battery.


Read recommendations:

18650 1200mAh 3.7V

Battery customization introduction.lithium battery for solar energy storage system Vendor

12V23A battery.Usage of lithium silicate batteries

AA NiMH battery Factory

Carbon battery

Last article:button battery 2032

Next article:CR2025 battery

Popular recommendation

360° FACTORY VR TOUR
lithium ion battery 18650 priceWhatsapp
lithium ion battery 18650 price

lithium ion battery 18650 priceTel
+86 19925278095

lithium ion battery 18650 priceEmail
admin@sino-techgroup.com

TOP