Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-03-12 Hits: Popular:AG11 battery
The article analyzes the mechanism of the influence of graphite anode materials on the fast charging performance of lithium-ion batteries, prepares a series of graphite anode materials with different coke raw materials, conducts particle size, polarization and XRD tests on them, and makes lithium-ion batteries for rate testing. Charging and rate cycle testing.
The article analyzes the mechanism of the influence of graphite anode materials on the fast charging performance of lithium-ion batteries, prepares a series of graphite anode materials with different coke raw materials, conducts particle size, polarization and XRD tests on them, and makes lithium-ion batteries for rate testing. Charging and rate cycle testing. The results show that graphite materials prepared from coke raw materials with better orientation have better fast charging performance. A high-energy-density fast-charging lithium-ion battery was made using the improved graphite anode, and the capacity retention rate reached more than 86% in a 6C/1 rate cycle test for 300 weeks.
introduction
Since its inception, lithium-ion batteries have been widely used in many fields. From the current point of view, lithium-ion batteries are not only widely used in electronic products such as mobile phones, digital cameras, tablets, etc., but have also made certain breakthroughs in the field of vehicle power supply; judging from the future market demand for lithium-ion batteries: fast charging type Lithium-ion batteries will become an important direction for lithium-ion batteries.
In order to improve the fast charging performance of graphite anode materials, this paper experimentally prepared a series of graphite anode materials made from different coke raw materials, and conducted particle size, polarization and XRD tests on them to make lithium-ion batteries for rate charging and rate charging. Loop test. And the test results were analyzed.
Analysis of the fast charging mechanism of lithium-ion batteries and the impact of graphite on fast charging of lithium batteries
Taking lithium cobalt oxide as the positive electrode and graphite as the negative electrode as an example, the reactions of the positive and negative electrodes when charging a lithium-ion battery are as follows:
Positive electrode reaction equation: LiCoO2→Li1-xCoO2+xLi+xe-
Negative electrode reaction equation: xLi+xe-+6C→LixC6
When a lithium-ion battery is being charged, part of the Li+ in lithium cobalt oxide breaks away from the crystal lattice and enters the electrolyte, and then migrates (embedded) into the crystal lattice of the negative active material carbon to generate a LixC compound.
During this process, lithium ions migrate and diffuse from the positive electrode to the negative electrode under the action of the electric field and concentration gradient, and undergo liquid phase diffusion in the solution, electrochemical reaction on the graphite surface, and solid phase diffusion in the graphite.
The solid-phase diffusion coefficient of lithium inside graphite is relatively small (usually only about 10-10cm2.s-1), which makes the solid-phase diffusion of lithium inside graphite easily become the control step of the entire electrode reaction. Therefore, improving graphite materials and increasing the solid-phase diffusion of lithium in graphite can effectively reduce the risk of battery polarization and lithium precipitation, and improve the fast charging performance of lithium-ion batteries.
Preparation of graphite
Preparation of artificial graphite from different coke raw materials: Select different coke raw materials a, b, and c respectively. After pulverization and sieving, perform high-temperature graphitization at 2800°C. The temperature rise rate is 15°C/min, constant temperature. Time: 5 hours. The high-temperature treated material is sieved through a 250-mesh screen to obtain artificial graphite A, B, and C. The physical and chemical indicators of different artificial graphite materials are shown in Table 1.
Withdraw power assembly
Take the CR2016 button battery shell, drop electrolyte into the positive shell, and then put in the negative electrode sheet, separator (drop electrolyte on the negative electrode sheet and separator respectively), processed lithium sheets, nickel foam, and stainless steel sheets , cover the negative electrode shell to seal the battery, and make a CR2016 button battery.
Full battery assembly
Mix lithium cobalt oxide, PVDF, conductive agent carbon black SuperP and solvent NMP with a mass ratio of 96.5:1.5:2, and then coat them on a 16 μm thick aluminum foil; mix artificial graphite with a mass ratio of 96:3:1, The binder (sodium carboxymethyl cellulose CMC, styrene-butadiene rubber SBR = 1:1) and the conductive agent carbon black SuperP were mixed with the solvent deionized water and then coated on a 10 μm thick copper foil. The coated positive and negative electrode sheets undergo processes such as sheeting, winding, drying, liquid injection, sealing, formation, and volume separation to make the 554065 soft-pack lithium-ion battery.
Read recommendations:
3.7 volt 18650 lithium battery.What is the process for customizing 18650 lithium battery pack?
powerwall lifepo4 battery for solar system.What is the lifespan of lithium-ion batteries?
Last article:r03 battery.Analysis of lithium battery safety and monitoring technology
Next article:Nickel Hydride No. 5 battery.Technical analysis of new energy vehicles: plug-in hybrid vs pure elect
Popular recommendation
energy storage battery for solar system wholesaler
2023-05-10AA Ni-MH battery Product
2023-03-22501825 polymer battery
2023-03-223.7V lipo battery company
2023-03-22601525 lipo battery company
2023-03-22505060 2000MAH 7.4V
2023-06-10R6P
2023-03-27702535 600mAh 3.7V
2022-06-27Coin Battery LR 1130
2022-10-15Home energy storage battery FBC-HS03
2022-11-04R6P
2022-08-19Coin Cell BR 2032
2022-10-15Ni-MH AA1200mAh 1.2Va
2022-07-01551235 180MAH 3.7V
2023-06-12R20
2022-07-017/AAA USB 1.5V 600mWh
2022-06-2718650 battery pack company
2023-06-25Nickel Metal Hydride No. 5 battery
2023-06-253V battery
2023-06-2518650 battery 1800mah
2023-06-25603450 polymer battery.What are the advantages and disadvantages of ternary lithium batteries?
2023-10-20What should I pay attention to when using robot lithium battery?
2023-02-21What is a Lithium-Ion Rechargeable Battery?
2025-06-27The difference between nickel hydrogen batteries and lithium batteries
2024-09-13What Materials are Used in Lithium Batteries?
2024-11-08Lithium iron phosphate batteries are also ternary lithium batteries.solar energy storage system batt
2023-03-23Safety design of lithium battery
2022-12-16What are the factors that affect the performance of lithium battery.portable energy storage battery
2023-04-10Confused battery types
2023-10-07Portable car startup power ODM.lithium ion battery energy storage Vendor
2023-05-13