Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-11-12 Hits: Popular:AG11 battery
Potassium-ion Nickel Metal Hydride No. 5 battery research and commercialization have broad prospects
The information-based and automated modern society is constantly progressing, and electrochemical energy storage devices have played an important role in it. Since the 1990s, with the commercial application of lithium-ion batteries, lithium-ion batteries have become a part of our lives since the 21st century. Lithium-ion Nickel Metal Hydride No. 5 battery portable devices and powered vehicles have been everywhere in our lives. However, unlike other commercial products that become cheaper the more they are sold, the scarce lithium resources make the cost of lithium-ion batteries continue to rise in the future. Seeking an alternative low-cost electrochemical energy storage device has become an urgent problem to be solved. The electrochemical properties of potassium and sodium are similar to those of lithium, and the earth's reserves are abundant, making them the only choice to replace lithium-ion batteries in the future.
The research on sodium-ion batteries has made great progress in recent years. However, due to its standard electrode potential (-2.71V, vs SHE.) and large ion radius limitation, the energy density and power density of sodium-ion batteries are still far behind those of lithium-ion batteries. The standard electrode potential of potassium (-2.93V, vs SHE.) is closer to that of lithium (-3.04V, vs SHE.). Since the ionic radius of potassium and sodium ions is larger than that of lithium ions, although the energy density is inferior to that of lithium ions, current research on potassium ion negative electrode carbon materials shows that the power density of potassium ion batteries is higher than that of sodium and closer to that of lithium ion batteries, and the rate performance is also better. However, at this stage, research on potassium ion positive electrode materials is minimal, and most studies use aqueous solutions as electrolytes, which limits the voltage window. Recently, the research group of Professor Lei Yong from the Technical University of Ilmnau in Germany and the research group of Shanghai University have cooperated to prepare a low-cost dye nanoparticle: Prussian blue, and elaborated on its electrochemical properties as a potassium ion positive electrode material in an organic electrolyte. At the same time, using it as a potassium ion positive electrode material, a high-performance potassium ion full Nickel Metal Hydride No. 5 battery was matched for the first time. The test results show that Prussian blue as a potassium ion positive electrode material presents a high discharge platform (3.1–3.4V) and a stable reversible specific capacity. At a charge and discharge rate of 50mA/g, it still has a cycle specific capacity of 73.8mAh/g, and the degradation rate is extremely slow, only 0.09% per-cycle. At the same time, by analyzing the electrochemical storage mechanism of Prussian blue molecules, they found that this framework molecular structure is extremely conducive to the storage and release of potassium ions with a larger radius, and its main active position is on C-FeⅡ/FeⅢ. Finally, they used this positive electrode material and combined it with the commercially used superP as the negative electrode material to design and match a potassium ion full Nickel Metal Hydride No. 5 battery for the first time. At a charge and discharge rate of 100mA/g, the full Nickel Metal Hydride No. 5 battery has a reversible specific capacity of up to 68.5mAh/g and a long cycle life. It still retains 93.4% of the specific capacity after 50 cycles of charge and discharge. For potassium ions with a larger radius, such a breakthrough is invaluable.
The research on low-cost Prussian blue dye as a potassium ion cathode material and its matching design for the whole Nickel Metal Hydride No. 5 battery have made lithium-ion batteries find a better alternative. This research provides broad prospects for the future research and commercial application of potassium ion batteries. This paper has been published online in Advanced Functional Materials (DOI: 10.1002/adfm.201604307) and is briefly introduced in the current Back Cover.
Read recommendations:
Battery material traditional stirring method
How to store lithium batteries when not in use for a long time
Next article:Nickel Metal Hydride No. 5 battery
Popular recommendation
18650 battery flat top
2023-03-22convenient energy storage power supply
2023-03-22701221 lipo battery company
2023-03-22602030 battery manufacture
2023-03-22AAA Ni-MH batteries direct sales
2023-03-22Business laptop bag
2022-09-22402427 260MAH 3.7V
2023-06-12Ni-MH AA800mAh 1.2V
2022-07-0118500 1000MAH 3.7V
2022-10-15903242 2500MAH 3.7V
2023-06-10701221 120mAh 3.7V
2022-08-19No.7 card-mounted carbon battery R03P
2023-06-28Lithium Battery GN60100
2022-08-19Home energy storage battery FBC-HS02
2022-11-08Alkaline D Battery LR20
2022-11-1118650 battery pack company
2023-06-256LR61 battery
2023-06-25CR2025 battery
2023-06-2518650 2200mah battery
2023-06-25603450 polymer battery
2023-06-25Super battery prospect.18650 lithium ion battery cell
2023-07-14Advantages Analysis of Polymer Lithium Batteries
2024-11-0512V23A battery.Usage of lithium silicate batteries
2023-12-18Model comparison table of button battery
2022-06-18How safe are lithium-ion batteries?
2023-11-23Technologies related to negative electrode free batteries.18650 lithium ion battery cell
2023-07-05Lithium battery improvement.18650 lithium-ion battery
2023-07-19What is the difference between civil lithium batteries and military lithium batteries
2023-02-16Do you need to pay attention to any safety issues during the use of lithium polymer batteries?102450
2023-08-19Will polymer lithium batteries explode easily?
2022-11-07