Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2025-08-22 Hits: Popular:AG11 battery
The structural design of lithium-battery cells directly impacts energy density, charge/discharge efficiency, safety, and manufacturing scalability. Lithium-battery cells (cylindrical, prismatic, or pouch) consist of four core components: cathode, anode, separator, and electrolyte, with structural optimization focusing on electrode configuration, separator integration, and cell packaging to balance performance and practicality.
Electrode configuration is key to maximizing energy density and ion transport. For cathodes and anodes, thin-film electrode design (coating thickness 50-80 μm vs. 100-120 μm) reduces ion diffusion distance, improving charge/discharge rate—thin-film NCM cathodes enable 2C fast charging (0-80% capacity in 30 minutes) with 90% efficiency, compared to 75% for thick-film cathodes. Electrode porosity (35-45% for cathodes, 40-50% for anodes) is optimized to balance electrolyte absorption and mechanical strength: higher porosity enhances ion transport but reduces electrode stability, so a middle range ensures sufficient electrolyte retention while preventing electrode cracking during cycling. Additionally, electrode tab design (position and number) affects current distribution—dual-tab or multi-tab designs (2-4 tabs per electrode) reduce current density, minimizing local heat generation and improving cycle life. For example, a cylindrical 18650 cell with dual anode tabs reduces internal resistance by 30%, lowering temperature rise during 10C discharge from 45°C to 35°C.
Separator integration enhances safety and ion conductivity. The separator (typically polyethylene, polypropylene, or ceramic-coated composites) is designed with a shutdown temperature (130-150°C) to block ion transport when overheating, preventing internal short circuits. Ceramic-coated separators (Al₂O₃ or SiO₂ coating, 2-5 μm thick) improve thermal stability—they maintain structural integrity at 200°C, compared to 160°C for uncoated separators, reducing the risk of separator melting. Separator pore size (0.1-0.5 μm) is tailored to prevent lithium dendrite penetration: smaller pores block dendrites but may reduce ion conductivity, so a 0.2-0.3 μm pore size balances safety and performance. Some advanced designs integrate separator and electrode layers (e.g., separator-coated electrodes) to reduce cell thickness, increasing energy density by 10-15% compared to traditional stacked structures.
Cell packaging balances protection and energy density. Cylindrical cells (e.g., 18650, 21700) use stainless steel casings for high mechanical strength, suitable for applications requiring durability (e.g., power tools), but their circular shape leaves gaps in battery packs, reducing space utilization. Prismatic cells (aluminum alloy casings) have a rectangular shape, enabling 90%+ space utilization in packs, ideal for EVs, and their thin casings (0.3-0.5 mm) reduce weight, improving energy density by 5-8% vs. cylindrical cells. Pouch cells (aluminum-plastic film packaging) are the lightest and thinnest (thickness ≤ 5 mm), with flexible shapes for custom designs (e.g., wearable devices), but they require external supports to prevent deformation under pressure.
Manufacturing compatibility is a key design consideration. Structural designs must be compatible with mass production processes: for example, roll-to-roll coating for thin-film electrodes, laser cutting for precise tab positioning, and automated stacking/winding for electrode assemblies. Prismatic cells, with simple stacking structures, are easier to mass-produce than pouch cells (which require precise heat sealing), making them more cost-effective for large-scale EV applications.
optimal lithium-battery cell design balances energy density, safety, and manufacturability through electrode optimization, separator innovation, and packaging selection. By tailoring structures to specific applications (EVs, consumer electronics, industrial equipment), lithium-battery cells can meet diverse performance requirements while supporting scalable production.
Read recommendations:
Preparation method of Lithium iron phosphate battery.lithium battery 18650
Last article:Testing Equipment for Lithium-Battery Discharge Performance
Next article:Lithium Battery Fast Charging Technology and Applications
Popular recommendation
lithium ion battery energy storage wholesale
2023-05-10Ni-MH batteries
2023-03-22convenient energy storage power supply Manufacturing
2023-05-10connector for energy storage battery Processing
2023-05-10601525 polymer battery company
2023-03-22801752 720mAh 3.7V
2022-06-27Lithium-ion battery GN200 60000mAh
2022-08-19Lithium Battery LQ12-200
2022-08-19LR61
2022-11-16551235 180mAh 3.7V
2022-08-19505060 2000MAH 7.4V
2023-06-1016340 700MAH 3.7V
2022-10-153.2V 280Ah
2022-10-12Ni-MH AA1500mAh 1.2V
2022-07-01702535 600mAh 3.7V
2022-06-27CR2032 button cell battery
2023-06-2518650 lithium rechargeable battery
2023-06-25AG10 battery
2023-06-25AAA NiMH batteries
2023-06-2518650 battery pack manufacturer
2023-06-25Graphene battery technology principle.lithium battery energy storage Processing
2023-04-06The battery tells you the characteristics of ternary lithium batteries
2024-05-13Low temperature military lithium battery
2024-08-05Application of Square Lithium Batteries in Energy Storage Power Stations
2024-10-24High Temperature Resistance of Lithium-Ion Batteries
2024-12-12What are the eight advantages of lithium iron phosphate battery
2023-06-27lithium ion battery 18650 price.Lithium-ion battery testing will use laser measurement technology
2023-10-1418650 battery 3.7v 3500mah.Analysis of common process points for 18650 lithium-ion batteries
2023-10-13Advantages of lithium-ion battery applications
2023-08-03The characteristics of low temperature iron phosphate battery
2023-05-16