Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-01-02 Hits: Popular:AG11 battery
When will the big battery breakthrough come? How to usher in a new situation
Electric aircraft may be the future of specialties. In theory, electric aircraft are quieter, cheaper and more environmentally friendly than traditional aircraft. If an electric aircraft can fly 1,000 kilometers on a single charge, it can complete nearly half of today's commercial flight missions and reduce global special carbon emissions by 15%.
The same goes for electric cars. In fact, electric cars are not only environmentally friendly, they are also better cars. The motor is almost silent and responds quickly to the driver's commands. Charging your car is much cheaper than burning oil. Electric vehicles have few moving parts and are cheaper to maintain.
Why haven’t electric cars become popular yet? Because batteries are so expensive, the upfront cost of buying an electric car is greater than a similar gasoline car. Unless you drive your car all the time, the gas money saved won't be enough to cover the upfront cost. Simply put, electric cars are still not economical enough.
In terms of weight or volume, current batteries cannot yet be used to power passenger aircraft. Humanity needs a breakthrough in battery technology before they can really take off.
Battery-powered portable devices have changed our lives, but batteries are limited by physical principles. In 1799, mankind invented the first battery. Since then, we have continued to study it for more than two centuries, but scientists still cannot fully understand what is going on inside the device. We just know that if we want batteries to change our lives again, there are three issues that need to be solved: power, energy and safety.
No universal lithium battery
Every lithium battery has two poles: a cathode and an anode. The anode of most lithium batteries is made of graphite, but the cathode is made of a variety of different materials, depending on where the battery is used. From the picture below, you can see the impact of different cathode materials on battery performance.
Power Challenge
Many times, we often use "Energy" and "Power" interchangeably, but when it comes to batteries, the meanings of the two are a little different. Power represents the rate of energy release. We call it power.
If you want a business jet to fly 1,000 kilometers on a single charge, you need a powerful battery that can release enough energy in a very short time, especially when taking off. Therefore, it is not enough to store a large amount of energy in a battery, but it must also be released very quickly.
If you want to solve the power problem, you need to have a deep understanding of the internal structure of some commercial batteries. We always hype new battery technology, mostly because we don't get a deep look at the internal details.
The most common chemical used in the batteries we use is lithium ion. Most experts believe that no other chemical can defeat lithium in the next 10 years or more. Lithium-ion batteries have two electrodes (cathode and anode), a separator (a material that conducts ions rather than electrons, preventing short circuits) in the center, and an electrolyte (usually a liquid). It allows lithium ions to flow back and forth between the two poles. When a battery charges, ions flow from the cathode to the anode, and when the battery discharges, the ions move in the opposite direction.
We might as well imagine it as two pieces of bread, the left one is the cathode and the right one is the anode. We might as well assume that the cathode is composed of nickel, manganese, and cobalt sheets (NMC), and the anode is composed of graphite, which is equivalent to stacking carbon atoms layer by layer.
In the discharge state, NMC bread will have a lithium-ion sandwich between the interlayers. When the battery charges, lithium ions are extracted from the interlayer and forced through the liquid electrolyte. The separator ensures that only lithium ions can pass through the graphite layer. When the battery is fully charged, there are no longer any lithium ions in the cathode; they are all neatly arranged between the graphite blocks. When the battery releases power, lithium ions flow back toward the cathode until the anode is free of any lithium ions. At this point we have to charge the battery again.
Essentially, the power of a battery is determined by how fast it can process. It's not that simple to speed things up. Lithium ions are extracted from the cathode, and if the speed is too fast, the layer will be damaged. Because of this, the longer the use of mobile phones, notebooks, and electric cars, the shorter the battery life is. Every time it is charged or discharged, the "bread cubes" become fragile.
Many companies are looking for better solutions. One idea is to replace the electrode layer with a structurally stronger material. For example, Swiss battery company Leclanché is developing a technology that uses lithium iron phosphate (LFP) as the cathode, which has an olivine structure, and lithium titanate oxide (LTO) as the anode, which has a spinel structure. structure. Using such materials to make batteries allows lithium ions to flow more efficiently.
At present, Leclanché has installed its own battery into a driverless forklift, which can be charged to 100% in 9 minutes. Compared with the Tesla Super Charger, it takes about 10 minutes to charge a Tesla car to 50%. In the UK, Leclanché is deploying its own batteries into fast-charging electric vehicles. The battery is installed at a charging station and slowly draws power from the grid until it is fully charged. When the car pulls into the station, the battery will quickly charge the car's battery. When the car leaves, the battery at the charging station starts charging again.
Leclanché’s research proves to us that it is entirely possible for humans to find better battery chemicals and increase battery power. But so far, humans have not found a battery that releases energy fast enough to meet the needs of business aircraft. Some startups are developing small planes that can seat up to 12 people that can be equipped with batteries with lower energy density, or electric hybrid aircraft that use fuel when taking off and batteries when cruising.
Unfortunately, although there are many companies researching it, none of the technologies are close to commercial use. Venkat Viswanathan, a battery expert at Carnegie Mellon University, said the batteries needed for purely electric business jets may not be developed for decades.
energy challenge
Model 3 is Tesla's cheapest car, starting at $35,000. A car equipped with a 50-kilowatt-hour battery costs about $8,750, accounting for 25% of the total price of the car.
Compared with previous years, such costs have dropped a lot. According to a report by Bloomberg New Energy Finance, the average cost of lithium-ion batteries in 2018 was approximately US$175 per kilowatt-hour, compared with approximately US$1,200 in 2010.
The U.S. Department of Energy calculates that once battery costs fall to $125 per kilowatt-hour, the cost of owning and operating an electric vehicle will be lower than that of a gasoline-powered vehicle, at least in most parts of the world. This does not mean that electric vehicles will completely defeat gasoline vehicles in all market segments and major markets. For example, battery-powered long-range trucks are not yet suitable. However, if this turning point is reached, it will become easier for everyone to choose electric vehicles, because it will be acceptable from an economic point of view.
One way to reach this tipping point is to increase the energy density of batteries and squeeze more kilowatt-hours into the battery pack. Theoretically, what we can do in terms of battery chemistry is to either enhance the energy density of the cathode, enhance the energy density of the anode, or both.
Among commercially available materials, the cathode with the highest energy density is NMC 811 (the numbers represent the ratio of nickel, manganese and cobalt). But the electrodes are still not perfect. The biggest problem is that the battery has a relatively small number of charge and discharge cycles, and then becomes useless. However, experts predict that within the next five years, industry researchers will solve the NMC 811 problem. If it does, the energy density of batteries using NMC 811 will increase by 10% or more.
Read recommendations:
Lithium -ion battery discharge.702535 battery
Last article:R03 Carbon battery.Can niobium tungsten oxide electrode enable fast charging of electric vehicle bat
Next article:1.5v Dry Battery.The key to replacing all buses in key cities with new energy vehicles is to advance
Popular recommendation
401030 battery Manufacturing
2023-03-22energy storage battery pack direct sales
2023-05-09521133 battery Processing
2023-03-2218650 rechargeable battery lithium 3.7v 3500mah
2023-03-22602248 battery Manufacturing
2023-03-22Coin Battery CR 1212
2022-09-279V card-mounted carbon battery 6F22
2023-06-28Lithium Battery GN60100
2022-08-19LR6
2022-12-07Coin Battery LR 521
2022-10-15R6P
2023-02-18LR6
2022-07-01Alkaline AA Battery LR06
2022-11-11502030 200mAh 3.7V
2022-07-01Coin Battery CR 1025
2022-09-2718650 battery 3.7v 3500mah
2023-06-25CR927 battery
2023-06-2518650 battery 10000mah
2023-06-253.7v battery 18650
2023-06-251800mah 18650 battery
2023-06-25Lithium battery steel shell/aluminum shell/cylinder/flexible packaging series
2022-12-14batteries aaa.Technical characteristics of lithium titanate batteries
2024-01-09Model and specification of cylindrical lithium battery
2022-12-05Lead-acid batteries
2023-02-03Innovative Breakthroughs in High-Energy-Density Lithium Batteries
2024-11-06What is the effect of low temperature battery?connector for energy storage battery wholesale
2023-04-19Model and specification of square lithium battery
2022-12-05Lithium ion battery manufacturers teach you how to test battery capacity.household energy storage li
2023-04-14What are some points to pay attention to when purchasing explosion-proof lithium batteries.18650 bat
2023-09-05How to control the customized charging and discharging process of 18650 lithium batteries?3.7V 18650
2023-09-08