18650 rechargeable battery lithium 3.7v 3500mah
CH
About Us
Company Profile Development History Sales Network Partner Social Responsibility
Products
Rechargeable Battery Battery Packs Energy Storage Battery Primary Battery Handicraft Article
Subsidiary Company
SINO TECHNOLOGY SUNBEAM GREEN POWER DATAPOWER SEONG-HEE STD
Honor
Qualification Certificate Patent Certificate Honor Certificate
R&D
R&D Center Test Center
News
Company News Industry News
Contact Us
18650 rechargeable battery lithium 3.7v 3500mah
18650 rechargeable battery lithium 3.7v 3500mah

Other information

Home  >  Other information

button battery cr1620

release time:2024-10-22 Hits:     Popular:AG11 battery

Process introduction of button battery cr1620

 

The power battery pack system is a battery pack that connects many individual cells in series and parallel, integrating battery hardware systems such as power and thermal management. Pack is the key to the production, design and application of power battery systems, and is the core link connecting upstream cell production and downstream vehicle applications. Usually, the design requirements are proposed by the cell factory or the automobile factory, and are usually completed by the battery factory, automobile factory or third-party Pack factory. The lithium battery Pack production line is relatively simple, and the core processes include feeding, bracket pasting, electric welding, and testing. The core equipment is laser welding machines and various pasting and testing equipment. At present, major lithium battery equipment manufacturers have less automated integration layout in this field, while laser equipment manufacturers such as Han's Laser and Lianying Laser have a high market share in the Pack equipment field due to their absolute advantages in the laser field. At present, the automation ratio of Pack production is relatively low because the sales volume of a single model of new energy vehicles is not large enough, and the cost of automated production lines is high.

 

Lithium iron phosphate and ternary: Energy density is an unavoidable topic, and different materials require a full set of equipment investment. At present, the positive electrode materials of mainstream domestic power lithium batteries are divided into two categories: lithium iron phosphate and ternary. Among them, lithium iron phosphate is the safest lithium-ion battery positive electrode material at present, and its cycle life is usually more than 2,000 times. In addition, due to the maturity of the industry, the price and technical threshold have dropped, so many manufacturers will adopt lithium iron phosphate batteries for various reasons. However, lithium iron phosphate batteries have obvious defects in energy density. At present, the energy density of lithium iron phosphate monomer cells of BYD, the leader of lithium iron phosphate batteries, is 150Wh. By the end of 2017, BYD expects to increase the energy density to 160Wh. In theory, the energy density of lithium iron phosphate is difficult to exceed 200Gwh. Ternary polymer lithium battery refers to a lithium battery whose positive electrode material uses nickel cobalt manganese oxide. The actual ratio of nickel, cobalt and manganese can be adjusted according to specific needs. Since ternary lithium batteries have higher energy density (currently, the energy density of ternary lithium batteries of first-class power battery manufacturers such as CATL can generally reach 200Wh/kg-220Wh/kg, and the industry expects that by 2020, the energy density of ternary battery cells will reach 300Wh/kg), the passenger car market has begun to turn to ternary lithium batteries, while lithium iron phosphate is more popular in buses with higher safety requirements. With the development of all-electric passenger cars, ternary lithium batteries are occupying an increasingly important position. The energy density and cost of the two materials are different, and different cars and different car companies have different choices. The two are roughly the same in production process flow, and the difference is mainly reflected in the use and ratio of materials, the specific process parameters are quite different, the equipment cannot be produced on the same line, and the cost of simply transforming and switching production capacity is high (ternary materials have strict requirements on vacuum dehumidification, etc., and the previous lithium iron phosphate production line basically has no dehumidification requirements), so many battery cell factories will simultaneously layout and purchase equipment separately in capacity planning.


Read recommendations:

Lithium Battery LQ-1220

What are the effects of lithium battery protection board?energy storage system lithium battery Manuf

Lithium battery development

801620 battery sales

CR2016 battery

Last article:button battery cr2032

Next article:button battery 2032

Popular recommendation

360° FACTORY VR TOUR
lithium ion battery 18650 priceWhatsapp
lithium ion battery 18650 price

lithium ion battery 18650 priceTel
+86 19925278095

lithium ion battery 18650 priceEmail
admin@sino-techgroup.com

TOP