Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2023-11-22 Hits: Popular:AG11 battery
Lithium ion batteries are an energetic component mainly composed of positive electrode, negative electrode, electrolyte, and separator. After charging, the positive electrode is generally a transition metal oxide, which has strong oxidizing properties; The negative electrode is graphite with a large amount of lithium embedded inside, which has strong reducibility. Electrolytes are generally organic esters with characteristics such as low melting point and flammability.
The firecrackers in our daily lives are also an energetic device, and many people know that the components containing gunpowder are sulfur (sulfone, chemical formula S), nitrate (stone, chemical formula KNO3), and charcoal. Among them, nitrate is a strong oxidant, and sulfur and charcoal are reducing agents. When the external stimulus exceeds 120 degrees, the redox reaction inside the firecrackers occurs violently, releasing a large amount of gas and heat, causing the gunpowder to burn and the firecrackers to explode.
From this, it can be seen that theoretically, lithium-ion batteries may undergo high exothermic oxidation-reduction reactions, and the combustible electrolyte contained in them can also promote this reaction, leading to combustion and even explosion consequences. How powerful is the combustion or explosion of lithium-ion batteries? From the perspective of storing electrical energy, the electrical energy of a regular lithium-ion battery with an energy density of 150Wh/kg is approximately 1/10 of the thermal energy density generated by the explosion of TNT explosives.
In lithium-ion battery accidents, the positive and negative electrodes can directly undergo severe redox reactions under special circumstances, and even aluminum and copper collectors can directly participate in the reaction in the form of reducing agents, generating significantly higher heat than the energy corresponding to battery storage. Generally speaking, in a safety accident involving lithium-ion batteries in a confined space, the maximum temperature can reach over 800 ℃, while the explosion heat of a 43.4g heavy lithium-ion battery is equivalent to 5.45g TNT, reaching 1/8 of the TNT equivalent.
The reason why lithium-ion batteries convert their internal chemical energy into electrical energy in a controllable and continuous manner through electrochemical reactions instead of violent oxidation-reduction reactions is because the separator effectively isolates the positive and negative electrodes physically and electrically (as well as the presence of conductive electrolyte). However, when various internal or external factors cause the diaphragm to fail, resulting in direct contact between the positive and negative electrodes, this internal short circuit can instantly release electrical energy, generate a large amount of heat and bring high temperatures, instantly disrupt the stability of the internal chemical system of the battery, leading to the oxidation-reduction reaction between the negative electrode electrolyte, positive electrode electrolyte, negative electrode and positive electrode, and even the fluid collector participating in the instantaneous exothermic heating The process of causing the electrolyte to instantly vaporize and then mix with positive and negative active material powder to spray out of the battery shell, resulting in combustion or even explosion, is called thermal runaway (TR).
The spontaneous thermal runaway is currently the biggest safety anxiety of electric vehicles. If every battery is completely consistent from microscopic electrode material particles and separators to macroscopic electrode plates and shell packaging, then a battery pack made of thousands or hundreds of thousands of such batteries will definitely have better safety characteristics. You may notice that the 100% expression here is a bit different, followed by a dozen or so zeros, which represents an ideal expectation - high consistency across the entire battery scale. As is well known, the consequence of battery inconsistency is that batteries with degraded performance will decay faster, with some passivation and deactivation leading to direct failure; Some have also taken a completely different path - internal short circuits leading to thermal runaway, combustion, and explosion
Read recommendations:
Last article:button cell battery cr1620.New energy promotes the construction of a carbon neutral society
Next article:48v 10kwh energy storage solar system.Anti interference measures for lithium battery PCB design
Popular recommendation
3.2v 200ah lifepo4 battery cell
2023-03-2218650 battery flat top
2023-03-22602535 battery company
2023-03-22601525 battery company
2023-03-22Nickel Hydride No. 5 batteries
2023-03-22LR20
2022-12-07Cabinet type energy storage battery 25KWH
2022-11-08Coin Battery CR 1216
2022-09-27Alkaline D Battery LR20
2022-11-11Personalized text bang sticker
2022-09-22Ni-MH AA2000mAh 1.2V
2022-07-01402030 180mAh 3.7V
2022-08-19Rack-mounted energy storage battery GN-10240
2022-09-27601525 170MAH 3.7V
2023-06-12Cabinet type energy storage battery 15KWH
2022-11-0818650 battery pack 12v
2023-06-2518650 battery pack maker
2023-06-2518650 battery flat top
2023-06-25AG12 battery
2023-06-25LR927 battery
2023-06-25Lithium-Ion Battery Module Design
2025-06-10Lithium - Ion Batteries for Tablets
2025-04-11Advantages and disadvantages of lithium battery
2022-11-16Custom - shaped Battery Customization Services
2025-03-14Why does battery capacity decrease quickly at low temperatures?
2024-03-04Features of built-in lithium battery electric vehicles.lithium 18650 li ion battery
2023-08-11li ion 18650 battery pack.Talk about the effect of gelling agent content on the discharge performanc
2023-10-13Explaining the production process of lithium ion battery.energy storage battery 48v lithium ion batt
2023-03-16What are the commonly used electronic equipment for lithium batteries?902030 polymer battery
2023-06-09What are the main uses of lithium ion batteries?Column rechargeable battery
2023-03-08