Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-03-09 Hits: Popular:AG11 battery
Lithium-ion batteries are green, high-energy and environmentally friendly batteries that appeared in the 1990s. They have outstanding advantages such as high energy density, environmental friendliness, no memory effect, long cycle life, and low self-discharge. They are ideal for cameras, mobile phones, laptops, and portable measurement equipment. It is an ideal power source for small and lightweight electronic devices such as instruments, and is also an ideal lightweight and high-energy power source for future electric vehicles and special applications. Therefore, lithium-ion batteries have become a hot topic of extensive research in the battery industry in recent years.
Formation is an important process in the production process of lithium batteries. During the formation, a passivation layer is formed on the surface of the negative electrode, that is, the solid electrolyte interface film (SEI film). The quality of the SEI film directly affects the cycle life, stability, and Electrochemical properties such as self-discharge and safety meet the requirements of secondary battery sealing and maintenance-free. However, the SEI film formed by different formation processes is different, and the impact on battery performance is also very different. The traditional low-current precharging method helps to form a stable SEI film, but long-term low-current charging will increase the resistance of the formed SEI film, thus affecting the rate discharge performance of lithium-ion batteries. The long process time affects production efficiency. In addition, for the lithium iron phosphate system, when the charging voltage is greater than 3.7V, the lattice structure of the lithium iron phosphate may be damaged, thereby affecting the cycle performance of the battery. Therefore, it is very important to explore an efficient lithium battery formation process. necessary. This article examines the impact of four formation processes on battery performance, and optimizes an efficient lithium-ion battery formation process, which can improve production efficiency and improve the performance of lithium-ion batteries.
1 trial
1.1 Main raw materials and equipment
The main raw materials and equipment used in the formation and cycle tests are shown in Table 1.
1.2 Preparation of battery
The company's lithium-ion battery production flow chart is shown in Figure 1.
1.3 Testing
1.3.1 Formation
Take 12 40AH batteries injected from the same batch and divide them into four groups, labeled A-1,2,3, B-1,2,3, C-1,2,3, D-1,2, respectively. 3. On the formation testing machine, the formation processes of the four groups of batteries are shown in Table 2.
1.3.2 Cycle test
After formation, the batteries were allowed to stand for 7 days. In a constant temperature box, a formation testing machine was used to conduct charge and discharge tests on the four sets of batteries at I3 current pairs, and the batteries were cycled at a constant temperature of 25°C for 30 weeks.
2Results and discussion
2.1 Formation
Batteries A-1, 2, 3, B-1, 2, 3, C-1, 2, 3, and D-1, 2, 3 were formed according to the above-mentioned formation process. The formation test data are shown in Table 3.
It can be seen from the data in Table 3 that the formation process 2 takes the shortest time, about 10 hours shorter than the formation process 1; the formation process 3 takes the longest, about 10 hours longer than the formation process 1; the formation process 4 is about 10 hours shorter than the formation process 1 3 hours. By comparing the above data, formation processes 2 and 4 have significantly improved production efficiency. Further cycle testing is required to make an in-depth comparison of the impact of the above formation processes on battery performance.
2.2 Cycle test
After formation, the battery was allowed to stand for 7 days. The four groups of batteries were charged and discharged with I3 current and cycled at a constant temperature of 25°C for 30 weeks. The cycle curves of the four groups of batteries were fitted as shown in Figure 2:
It can be seen from Figure 2 and experimental data:
(1) After 30 cycles, the batteries formed by formation process 1, formation process 2, formation process 3, and formation process 4 have an average reduction in discharge capacity of 0.123%, 0.075%, 0.113%, and 0.068% respectively. It can be seen that the formation process cycle 4 has the best performance.
(2) The formation time of Formation Process 2 is about 10 hours shorter than that of Formation Process 1, which can greatly improve production efficiency, and the battery capacity decays slowly, but the discharge capacity of the battery is low.
(3) Batteries formed by formation process 3 have a faster capacity fading, and the formation time is about 10 hours longer than that of formation process 1, resulting in low production efficiency.
(4) The three batteries formed by formation process 4 have a higher discharge capacity and slow capacity fading, and the formation time is about 3 hours shorter than that of formation process 1, which can improve production efficiency.
3 Conclusion
Comprehensive comparison of four formation processes, and the impact of the four formation processes on battery performance was examined. From the analysis of formation and cycle data, it can be seen that formation process 4 is better. This formation process can improve production efficiency and increase the discharge capacity of lithium-ion batteries. , Improve the cycle performance of lithium-ion batteries. The formation process is: 0.1C constant current charging to 0.65 of the battery charge, then 0.1C constant current discharge to 2.5V, two consecutive cycles.
Read recommendations:
The advantages and disadvantages of ternary lithium batteries.solar energy storage lithium ion batte
batteries aaa.Technical characteristics of lithium titanate batteries
Last article:2025 button cell battery.Technical interpretation: Power batteries and electric vehicle safety can b
Next article:18650 lithium battery 3.7 v.The essence of forklift maintenance technology
Popular recommendation
601435 battery Processing
2023-03-22lithium 3400mah 3.7v 18650 battery
2023-03-22522749 polymer battery company
2023-03-22602030 battery sales
2023-03-22industrial energy storage battery Manufacturing
2023-05-10401030 90mAh 3.7V
2022-07-01Coin Battery CR 1225
2022-09-27D USB 1.5V 6000mWh
2023-06-2918650 2400MAH 3.7V
2022-07-296F22
2022-08-19LR6
2022-11-16Wireless bluetooth headphones
2022-09-22Moving straps (single shoulder design)
2022-09-22803040 1000mAh 3.7V
2022-06-2718650 2500mAh 3.7V
2022-08-197/AAA USB 1.5V 600mWh
2022-06-2712V23A battery
2023-06-25NiMH No. 7
2023-06-25NiMH battery pack
2023-06-2518650 lithium ion battery 3.7v
2023-06-25Design specification for lithium batteries
2024-04-18Working Principle of Liquid Lithium - Ion Batteries
2025-05-17Fast-Charging Lithium-Ion Batteries
2024-12-17Select battery cells
2024-07-11Optimization of Internal Resistance in Polymer Batteries
2025-06-07Cycle life prediction
2022-12-29Maintenance methods for lithium battery batteries.9V rechargeable battery
2023-08-17The benefits of lithium batteries for solar street light storage.connector for energy storage batter
2023-04-03What are the main materials for lithium battery manufacturers?lifepo4 solar panel energy storage sys
2023-03-23Main categories of batteries.18650 battery 3.7v 6000mah
2023-08-14