Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2023-11-14 Hits: Popular:AG11 battery
According to foreign media reports, electric car manufacturer Tesla's battery research team in Canada recently submitted a new patent application. This is a method of analyzing electrolytes in lithium-ion batteries, which will help prevent batteries from developing. Fault.
The patent was filed in Halifax by the Tesla battery research team led by Jeff Dahn. Dahn is considered a pioneer in the field of lithium-ion batteries. Dahn has been committed to the research of lithium-ion batteries since their invention. He helped improve the life cycle of lithium-ion batteries, which aided their commercialization. Dahn's work now focuses on improving battery energy density and durability.
In 2016, under the newly established "NSERC/Tesla Canada Industrial Research" (NSERC/Tesla Canada Industrial Research), Dahn's research team ended its 20-year research agreement with 3M and began to cooperate with Tesla. With this agreement, Tesla invests in a new research lab near Dahn Group near Halifax, Nova Scotia.
Dahn hasn't revealed much in the past few years, but it has been previously reported that his team has been working on electrolyte additives to improve the chemical properties of lithium-ion batteries. Earlier this year, the team began to apply for a battery technology patent for Tesla, and today it announced a new patent, which is the so-called "Method and System for Determining the Concentration of Electrolyte Composition in Lithium-Ion Batteries."
Dahn et al. describe the invention in the patent application abstract:
Our technology provides a computer-implemented method for determining the concentration of electrolyte components in lithium-ion batteries or lithium-ion batteries. The method includes issuing instructions to a spectrometer to capture a spectrum of an electrolyte sample solution and generate a signal. The method involves analyzing the signal to determine one or more spectral features of the spectrum.
The method includes preparing a spectral database corresponding to solutions having predetermined concentrations of electrolyte components, wherein the database includes a spectral database for a plurality of spectral features for each solution. The method also includes determining a machine learning (ML) model using a spectral database, and includes using the ML model to determine the concentration of the electrolyte component in the sample solution.
Tesla described current problems with electrolytes and how to analyze their status:
A major cause of failure in lithium-ion batteries, especially in high-voltage batteries, is the degradation of the electrolyte, especially on the surface of the charging electrode. Existing methods to solve battery failure and electrolyte degradation mainly focus on electrolyte decomposition product films built on the electrode surface. These films contain chemical components derived from electrolyte solvents and electrolyte salts, such as lithium hexafluorophosphate (LiPF6).
For example, LiPF6 decomposes into LiF and PF5, which is easily hydrolyzed into HF and PF3O. Both hydrolysis products are highly active on the electrode, and they inevitably exist in the LiPF6 solution and may adversely affect the performance of the electrode. Although the consumption mechanism of electrolyte solvent and electrolyte salt LiPF6 in lithium-ion batteries has been determined, there does not exist a cheap and accurate method to characterize unknown electrolytes and thereby determine the degree of electrolyte degradation.
Typically, quantitative analysis of electrolyte solutions focuses on expensive analytical tools such as nuclear magnetic resonance spectrometry (NMR), gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), and inductively coupled plasma optical emission spectrometry (ICP). -OES) and requires a significant amount of time to analyze. Furthermore, some analytical tools cannot even directly measure the concentration of electrolyte components. For example, columns or detectors used in chromatographic methods cannot be exposed to the high-temperature decomposition products of LiPF6, so these methods focus only on the organic portion of the electrolyte.
Read recommendations:
What are the disadvantages of lithium iron phosphate batteries?photovoltaic energy storage battery s
Discussion on the new market of lithium iron phosphate battery
Last article:5kwh energy storage battery.Can battery technology rewrite ship power?
Next article:3.2v 100ah lifepo4 battery.Hunan Corun fuel cell technology industrialization process accelerates
Popular recommendation
801752 battery wholesaler
2023-03-221.5V NiMH batteries Product
2023-03-22energy storage battery for solar system company
2023-05-1014500 battery wholesaler
2023-03-22NiMH battery pack manufacture
2023-03-22Coin Battery CR 2032
2022-09-27Ni-MH AA2000mAh 1.2V
2022-07-01LR14
2022-07-01801520 180mAh 3.7V
2022-06-27No.7 card-mounted carbon battery R03P
2023-06-28551235 180mAh 3.7V
2022-08-19Lithium-ion battery G500
2022-11-22902030 500mAh 3.7V
2022-06-27Elastic sports armband
2022-09-2218650 2600mAh 3.7V
2022-08-191800mah 18650 battery
2023-06-25LR41 battery
2023-06-25button cell battery cr1620
2023-06-25AA Dry Battery
2023-06-25battery 18650 genuine
2023-06-25Fast-Charging Lithium-Ion Batteries
2024-12-17How to ensure the consistency of the 18650 battery pack?button cell battery cr1620
2023-09-183.2v 300ah lifepo4 battery.Can polymer lithium batteries be shipped or not?
2023-11-08What causes the loss of battery energy
2022-11-04Lithium-Ion Batteries for Electric Vehicles
2024-12-05Detailed breakdown of ternary lithium batteries.18650 rechargeable battery lithium 3.7v 3500mah
2023-09-25How to control the self -discharge of lithium ion battery packs.energy storage system lifepo4 batter
2023-03-2818650 Battery Pack Applications
2022-12-13The problem of battery pollution is a "pseudo -proposition".cabinet type energy storage ba
2023-04-1148V lithium ion battery
2022-12-06