Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-08-09 Hits: Popular:AG11 battery
Effect of Cyclic Aging on Lithium and Electrolyte Distribution in CR2016 battery
Continuous interfacial side reactions during the cycling process of CR2016 battery will cause electrolyte consumption and loss of active Li. At the same time, due to the inhomogeneity of temperature, current, pressure and other factors inside the lithium battery, there will also be obvious inhomogeneity in the side reactions inside the lithium battery.
Recently, M.J.Mühlbauer (first author) and A. Senyshyn (corresponding author) of the Technical University of Munich in Germany analyzed the distribution of Li and electrolyte inside the lithium battery at the end of its life through neutron diffraction. The research showed that The distribution of Li and electrolyte in CR2016 battery at the end of their life is significantly uneven.
Using the neutron diffraction method to study electrolytes requires a full understanding of the structure and characteristics of the electrolyte. In fact, EC and DEC have been fully studied in relevant literature, but there is still relatively little research on DMC. The conductivity of the electrolyte will significantly decrease at low temperatures, and may even solidify. Neutron diffraction can also be used to analyze the quantity and spatial distribution of the solidified electrolyte inside the lithium battery.
The research object used by the author in the experiment is a 3.4Ah 18650 battery from Panasonic Corporation of Japan. The positive electrode is NCA and the negative electrode is graphite. Figure a below is the internal structure diagram of the lithium battery obtained by the author through CT. The cycle test in the experiment was conducted at room temperature using Neware's BTS3000 test system. The charging system was CC-CV, the charging current was 1.675A, the discharge system was 6A constant current discharge, and the battery was cycled 60, 120, 210, 400, 600, 800, 1000, 1112 and 1392 times respectively. .
The author uses the change in battery voltage caused by the current change at the beginning and end of discharge to calculate the internal resistance of the battery at 0% SoC and 100% SOC. Figure b below shows the internal resistance of the battery at 0% and 100% SoC. As the cycle number changes curve, we can notice that the internal resistance of the fully charged battery increases rapidly at 810-850 times. This is important because the battery is very polarized at this time, and the battery voltage changes from 4.2 in the early stages of discharge. V dropped to 2.5V.
The author used pulse charging and discharging (400mA) to measure the internal resistance information of the battery in different SoC states. The figure d below shows the internal resistance during the charging process, and the figure e below shows the internal resistance during the discharging process.
Figure a below shows the distribution of Li concentration in the negative electrode of a new battery and a cycled 18650 battery. It can be seen that the Li concentration of the cycled battery is significantly lower than that of a fresh battery. This is mainly due to the consumption of Li by side reactions at the interface during the cycle. More active Li. At the same time, there is also a significant uneven Li concentration in the height direction of the battery. The Li concentration in the upper and lower parts of the battery is lower. This gap may be due to uneven pressure and temperature during the operation of the battery, as well as the electrolyte. Caused by factors such as uneven infiltration and gas accumulation.
Among these factors, the electrolyte factor is relatively difficult to study. Here, the author used neutron diffraction tools to study the distribution of low-temperature solidified electrolyte inside the lithium battery (as shown in Figure b below). From the figure, it can be seen that in the fresh There is significant inhomogeneity in the electrolyte in the diameter direction of the battery. There is significantly more electrolyte outside the cell than inside the battery, but the electrolyte distribution in the height direction of the battery is almost the same. However, after the cycle, first of all, the overall concentration of the electrolyte dropped significantly, and the distribution of the electrolyte still had a significant phenomenon of more outside and less inside. At the same time, aging also led to significant differences in the electrolyte in the height direction of the battery. The electrolyte at the bottom of the battery is significantly higher than at the top of the battery.
This non-uniform distribution of Li and electrolyte inside the cycled lithium battery indicates that there is a relatively complex mechanism for the degradation of CR2016 battery during cycling. In order to analyze the relationship between electrolyte and lithium loss, the author analyzed batteries with different cycle times. From the insert in Figure a below, we can see that the ratio of (001)/(002) LiC6/LiC12 changes with the number of cycles. The lithium content in the graphite anode continues to decrease, and the intensity of the (002) peak of the reaction electrolyte also decreases. Based on the above diffraction data, the author calculated the electrolyte and Li content diagram in the battery (as shown in Figure b below). From the figure, it can be seen that as the number of cycles increases, the contents of the electrolyte and active Li also appear. There is an obvious decrease, but the decline process is obviously divided into two processes. In Figure c below, the author created a relationship diagram between the relative values of active Li and electrolyte. From the figure, we can see two areas more clearly. In the 1-2 area, the loss of Li and the loss of electrolyte are linear. But after 600 cycles, the loss of active Li in the negative electrode basically stopped, but the electrolyte began to decompose massively.
Inhomogeneous distribution of lithium and electrolyteinaged Li-ion cylindrical cells, Journal of Power Sources 475 (2020) 228690, M.J.Mühlbauer, D.Petz, V.Baran, O.Dolotko, M.Hofmann, R.Kostecki, A.Senyshyn
Read recommendations:
Home energy storage battery GN-BOX2
What is a coiled battery?lithium ion battery cells 18650
Popular recommendation
601248 polymer battery company
2023-03-22702535 battery manufacturer
2023-03-2247v battery pack lithium ion sales
2023-05-09li ion 18650 battery pack maker
2023-05-09lithium-ion battery pack
2023-05-09Coin Cell BR 1225
2022-10-15601848 500mAh 3.7V
2022-07-01601525 170MAH 3.7V
2023-06-12Lithium-ion battery GN-300
2022-09-27602030 300mAh 3.7V
2022-07-01Alkaline AA Battery LR06
2022-11-1118650 1500mAh 3.7V
2022-08-19LR14
2022-08-19602248 600mAh 3.7V
2022-07-01LR6
2022-08-19li ion 18650 battery pack
2023-06-25CR1225 battery
2023-06-25NiMH No.7 batteries
2023-06-259v alkaline battery
2023-06-253V battery
2023-06-25LR6 alkaline battery.Outdoor mobile portable UPS energy storage power supply solution
2024-01-08What are the effects of fast charging of mobile phone batteries.solar energy storage lithium ion bat
2023-10-07AG7 battery.What is the difference between soft pack lithium-ion batteries and hard pack lithium-ion
2023-11-09AG5 battery.Can I use a lithium-ion battery instead of a lead-acid battery in an existing forklift?
2023-11-20Principle and application method of polymer lithium battery
2024-04-09The difference between lithium iron phosphate batteries and ordinary lithium batteries.household ene
2023-04-14What factors should be considered when using high-temperature batteries?12v deep cycle marine batter
2023-09-09Is it necessary for model Xiaobai to go to an ultra -high multiplier battery?energy storage battery
2023-04-2118650 lithium ion battery 3.7v.Introduction to the production process of 18650 lithium battery pack
2023-10-13Characteristics of lithium-ion batteries
2023-07-27