Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-02-26 Hits: Popular:AG11 battery
Solar cell (module) production process The component line is also called the packaging line. Packaging is a key step in the production of solar cells. Without a good packaging process, no matter how good the battery is, it will not be able to produce good component boards. The packaging of the battery not only ensures the life of the battery, but also enhances the battery's resistance strength. The high quality and long life of the product are the keys to winning customer satisfaction, so the packaging quality of the component board is very important.
process:
1. Battery inspection - 2. Front welding - inspection - 3. Back series connection - inspection - 4. Laying (glass cleaning, material cutting, glass pretreatment, laying) - 5. Lamination - 6. Deburring ( Edge removal, cleaning) - 7. Frame installation (gluing, corner key installation, punching, framing, scrubbing residual glue) - 8. Welding junction box - 9. High voltage test - 10. Component test - appearance Inspection - 11. Packaging and warehousing components with high efficiency and long service life
How to guarantee:
1. High conversion efficiency, high quality battery cells;
2. High-quality raw materials, such as: EVA with high cross-linking degree, encapsulant with high bonding strength (neutral silicone resin glue), tempered glass with high light transmittance and high strength, etc.;
3. Reasonable packaging technology
4. Rigorous work style of employees; since solar cells are high-tech products, some details in the production process, and some inconspicuous problems such as wearing gloves but not wearing them, applying reagents evenly but not finishing in a sloppy manner, etc., will affect the quality of the product. the enemy, so in addition to formulating a reasonable production process, the seriousness and rigor of employees are very important.
Introduction to solar cell assembly process: Process introduction: Here we only briefly introduce the function of the process.
To give you a perceptual understanding.
1. Battery test: Due to the randomness of the production conditions of battery cells, the performance of the batteries produced is not the same. Therefore, in order to effectively combine batteries with consistent or similar performance, they should be classified according to their performance parameters; battery testing is Classify batteries by testing their output parameters (current and voltage). In order to improve the utilization rate of batteries and make battery components with qualified quality.
2. Frontal welding: The bus strip is welded to the main grid line on the front side of the battery (negative electrode). The bus strip is a tinned copper strip. The welding machine we use can spot weld the strip to the main grid in a multi-point manner. on-line. The heat source used for welding is an infrared lamp (using the thermal effect of infrared rays). The length of the welding ribbon is approximately twice the side length of the battery. The extra soldering ribbon is connected to the back electrode of the subsequent battery piece during back welding.
3. Backside series connection: Backside welding is to connect 36 cells in series to form a component string. The process we currently use is manual. The positioning of the battery mainly relies on a membrane plate with 36 recesses for placing the battery cells. The size of the slot corresponds to the size of the battery. The position of the slot has been designed. Different templates are used for components of different specifications. The operator uses a soldering iron and solder wire to solder the front electrode (negative electrode) of the "front battery" to the " On the back electrode (positive electrode) of the "back battery", connect 36 pieces together in series and weld leads to the positive and negative electrodes of the component string.
4. Laminated laying: After the back side is connected in series and passed the inspection, the component strings, glass, cut EVA, fiberglass, and backboard are laid according to certain levels and prepared for lamination. The glass is pre-coated with a layer of primer to increase the bonding strength between glass and EVA. When laying, ensure the relative position of the battery string and glass and other materials, and adjust the distance between batteries to lay a solid foundation for lamination. (Laying level: from bottom to top: glass, EVA, battery, EVA, fiberglass, backplane).
5. Component lamination: Put the laid battery into the laminator, vacuum out the air in the component, then heat to melt the EVA and bond the battery, glass and backplate together; finally cool and remove the component. The lamination process is a key step in component production. The lamination temperature and lamination time are determined by the properties of EVA. When we use fast-cure EVA, the lamination cycle time is about 25 minutes. The curing temperature is 150°C.
6. Trimming: During lamination, the EVA melts and solidifies outward due to pressure to form burrs, so it should be removed after lamination.
7. Framing: Similar to installing a frame on glass; installing aluminum frames on glass components increases the strength of the components, further seals the battery components, and extends the service life of the battery. The gaps between the frame and the glass components are filled with silicone resin. Each frame is connected with angle keys.
8. Welding junction box: Weld a box at the lead on the back of the component to facilitate the connection between the battery and other equipment or batteries.
9. High-voltage test: High-voltage test refers to applying a certain voltage between the component frame and the electrode lead to test the voltage resistance and insulation strength of the component to ensure that the component is not damaged under harsh natural conditions (lightning strikes, etc.).
10. Component testing: The purpose of the test is to calibrate the output power of the battery, test its output characteristics, and determine the quality level of the component.
Read recommendations:
The service life of ternary lithium battery is usually several years
The difference between power lithium batteries and regular lithium batteries
Last article:CR2016 battery.Lithium battery charging circuit design
Next article:R03 Carbon battery.What is photovoltaic technology?
Popular recommendation
551235 lipo battery company
2023-03-22601248 polymer battery
2023-03-2218650 battery pack 3.7v
2023-03-22photovoltaic energy storage battery wholesale
2023-05-10Nickel Hydride Batteries company
2023-03-22Bluetooth headset
2022-07-22R20
2022-07-01551235 180MAH 3.7V
2023-06-12603450 1200mAh 3.7V
2022-07-01702535 600MAH 3.7V
2023-06-10Adhesive hook and loop straps
2022-09-22Lithium Battery LQ-1220
2022-08-19Lithium-ion battery GN500 518wh
2022-08-237/AAA USB 1.5V 600mWh
2023-06-2914500 850mAh 3.7V
2022-06-20NiMH No. 7
2023-08-04lithium battery 18650 3.7v
2023-06-2518650 battery cell
2023-06-25AG13 battery
2023-06-25LR43 battery
2023-06-2518650 battery 3500mah.On the Self Protection Function of Lithium Batteries
2024-01-08Square lithium battery
2024-03-06What are the technical requirements for lithium iron phosphate battery packs?Nickel Hydride No. 5 ba
2023-09-08lithium 3400mah 3.7v 18650 battery.Lithium titanate battery
2023-12-08Do you know the three major characteristics of lithium iron phosphate batteries.102450 polymer batte
2023-08-18Lithium battery tram.CR1130 battery
2023-07-03Ternary polymer lithium battery.102450 polymer battery
2023-09-25Application of energy storage lithium batteries in the field of renewable energy.402030 battery
2023-08-213.7v 2200mah 18650 lithium battery.Material performance detection method:
2023-10-14What are the causes of battery energy loss
2023-02-22