Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-05-10 Hits: Popular:AG11 battery
12V23A battery proton exchange membrane preparation process
12V23A battery proton exchange membrane preparation process - the traditional method is developed on the basis of phosphate 12V23A batterys. The specific preparation process of this method is: mix the Pt/C electrocatalyst with the diluted PTFE solution (or powder) to prepare a uniformly dispersed catalyst slurry, prepare a catalytic layer on the surface of the diffusion layer by spraying, and then heat it at 80 Dry in a vacuum oven at °C to remove the organic solvent in the catalytic layer. 12V23A battery proton exchange membrane preparation process
(1) Clean the coating clamp. Use absorbent cotton dipped in absolute ethanol to clean the clamp and gasket (see Figure 1(a)).
(2) Install the proton exchange membrane on the fixture, place a sealing gasket on the base, see Figure 1(b); then place the proton exchange membrane, see Figure 1(c); then place a round hole sealing gasket. , see Figure 1(d).
(3) Cover the clamp panel, see Figure 1(e); then clamp the membrane with screws, see Figure 1(f); apply the prepared catalyst slurry evenly on the membrane (the membrane will curl at this time , which is a normal phenomenon), blow dry with a hair dryer, see Figure 1(g).
(4) Remove the membrane from the fixture, invert it, and repeat the catalyst coating step.
Preparation method of 12V23A battery proton exchange membrane
1. Traditional law
The traditional method was developed on the basis of phosphate 12V23A batterys. The specific preparation process of this method is: mix the pt/C electrocatalyst with the diluted pTFE solution (or powder) to prepare a uniformly dispersed catalyst slurry, use spraying to prepare a catalytic layer on the surface of the diffusion layer, and then 80 Dry in a vacuum oven at °C to remove the organic solvent in the catalytic layer. Then the diluted Nafion solution is impregnated or sprayed on the surface of the catalytic layer, and dried in a vacuum oven at 80°C; finally, the electrode and the proton exchange membrane are hot-pressed to prepare the MEA.
MEA prepared by this method uses pTFE as a hydrophobic agent, which is beneficial to gas mass transfer. The catalytic layer can be made thicker, about 30~50um. The disadvantage is that it is usually difficult for the Nafion solution to fully enter the catalytic layer and fully contact the catalyst. Generally, it can only penetrate about 10μm into the catalytic layer, making the catalyst utilization rate low, generally around 10% to 20%. Secondly, pTFE is used as a hydrophobic agent, which is not conducive to the conduction of electrons and protons; at the same time, the expansion coefficients of the catalytic layer and the proton exchange membrane are different. The proton exchange membrane shrinks and swells more seriously when it loses or absorbs water, and it is easy to interact with the catalytic layer. Separation causes the interface resistance of the electrode to increase and the electrical performance to decay seriously.
2. Thin layer electrode method
The Los Alamos Laboratory in the United States proposed the thin-layer electrode method, mainly to overcome the problem of expansion mismatch between the traditional electrode catalytic layer and the proton exchange membrane. The main feature of this method "is that the hydrophobic agent pTFE is not added to the catalytic layer, but the hydrophilic agent Nafion solution is used as the binder and proton conductor. The specific preparation method is: first, the diluted 5% Nafion solution and pt /C electrocatalyst is mixed, the mass ratio is about 3:1, and then water and glycerol are added to it, and the mass ratio of pt/C:H2O:glycerol is controlled at 1:5:20. After ultrasonic vibration, apply it multiple times. onto the pretreated pTFE membrane, dried at 130C, then hot-pressed the pTFE membrane with the catalytic layer and the proton exchange membrane, separated from the pTFE membrane, and transferred the catalytic layer to the proton exchange membrane. A supporting layer of carbon paper is combined with it to form a thin-layer electrode.
3. Vacuum deposition method
Vacuum deposition methods generally include chemical vapor deposition, physical vapor deposition and sputtering. The performance of electrodes prepared by vacuum deposition depends to a large extent on the preparation of the sputtered substrate, and different sputtering processes have little impact on the performance. The pretreatment of the substrate mainly involves the process of impregnating the porous substrate with pTFE and carbon powder. The sputtering method is used to make the catalytic layer, which has obvious effects on reducing the PT loading, improving the utilization of the catalyst and increasing the area specific power of the electrode. However, the water generated in the 12V23A battery prepared by this method is not easy to discharge, and it It is not suitable for mass production of electrodes and the cost is also high.
Read recommendations:
How to repair nickel -metal hydride batteries.lithium ion battery energy storage Manufacturing
As of my knowledge cutoff in September 2021, the lithium-ion battery industry was experiencing a sig
Popular recommendation
connector for energy storage battery company
2023-05-10solar energy battery storage system wholesaler
2023-05-1014250 battery wholesale
2023-03-22Ni-MH battery pack
2023-03-22AAA Ni-MH batteries Vendor
2023-03-22602248 600mAh 3.7V
2022-08-19503759 1200mAh 11.1V
2022-08-19902030 500mAh 3.7V
2022-06-27Coin Cell BR 1220
2022-10-1518650 800mAh 3.7V
2022-06-27Lithium Battery LQ-1218
2022-08-19601435 270MAH 3.7V
2023-06-12No.7 card-mounted carbon battery R03P
2023-06-28701224 145mAh 3.7V
2022-08-19LR14
2022-08-1918650 battery pack Product
2023-06-25CR1616 battery
2023-06-2518650 battery pack
2023-06-25button cell battery cr1620
2023-06-25802540 polymer battery
2023-06-25Nickel Metal Hydride No. 5 battery
2024-09-29Compatibility of Lithium Battery Chargers
2024-10-17Ni-MH battery pack
2024-09-28Want to know where is the advantage of ternary lithium batteries?solar energy storage lithium ion ba
2023-03-10What is the custom process of 18650 lithium batteries?48v 100ah lifepo4 battery pack
2023-03-28What functions do AGV lithium batteries need
2023-02-18Tell me about how to distinguish and test methods for polymer batteries.18650 lithium battery 3000ma
2023-09-08What are the types of low-temperature batteries used according to their environment?3.7 volt 18650 l
2023-09-08Analysis of the Causes of Lithium Battery Explosion.18650 lithium rechargeable battery
2023-09-08Lithium iron phosphate batteries are also ternary lithium batteries.solar energy storage system batt
2023-03-23