Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-03-05 Hits: Popular:AG11 battery
Lithium-ion batteries with the advantages of high voltage, high capacity, long cycle life, and good safety performance have broad application prospects in portable electronic equipment, electric vehicles, space technology, special industries, etc. Power lithium-ion battery packs composed of several lithium-ion batteries connected in series are currently the most widely used. Since the voltage of each single cell is inconsistent, the battery is not allowed to be overcharged or overdischarged during use, and the performance and life of the battery are greatly affected by temperature. The series lithium-ion battery pack must be monitored to ensure that the lithium-ion battery pack is in use. If the battery is in good condition, or if there is a problem with the battery during use, the alarm will be reported immediately. The power management system will immediately take safeguard measures and remind relevant personnel for maintenance. Cell voltage and battery pack temperature are the main technical indicators to identify whether the series-connected lithium-ion battery pack is working properly. Literature [1] uses the direct sampling method to store the single cell voltage to be measured on a non-capacitor for measurement. This method has slow response time, large error, and complex control; the literature [2] uses operational amplifiers and photocoupler relays to measure the cell voltage of the series battery pack. This method requires high linearity of the optocoupler, resulting in higher hardware costs. Currently, series-connected lithium-ion battery pack monitoring systems that directly use integrated chips are favored. However, this method has a fixed number of series-connected batteries, resulting in inflexible applications and high hardware costs. In this article, a power lithium-ion battery pack monitoring system is developed to conduct online monitoring of the cell voltage of the series-connected lithium-ion battery pack and the temperature of the battery pack. When the cell voltage deviates from the specified range, the monitoring system starts an alarm program to sound and Light alarm; when the temperature of the battery pack deviates from the specified range, the monitoring system starts the fan or heating control circuit and stores relevant data to ensure the normal operation of the battery pack. The entire monitoring system has the characteristics of continuous component measurement, simplicity and economy, high precision and high reliability.
1Technology and solutions
1.1 System structure
The series lithium-ion battery pack monitoring system includes the core control module using the 51 series microcontroller, the lithium-ion battery pack status acquisition module, the signal conditioning module, the alarm and processing system module, and the monitoring system can form a distributed monitoring system with the PC machine through the RS485 interface. To realize the monitoring of multiple series-connected battery packs by one PC, the system structure diagram is shown in Figure 1.
The status acquisition module includes the collection of parameters such as the voltage of a single battery and the temperature of the battery pack, and then processes the measured signal, samples it through the A/D converter and transmits it to the microcontroller for data processing, and transmits the valid data to the local through the serial port. PC machine, monitoring personnel can understand the working status of the battery pack by analyzing the status data, handle unsafe status in a timely manner, and ensure the reliability of its work.
1.2 Common ground problem of series-connected lithium-ion battery packs
There are many methods for measuring the voltage of series lithium-ion battery packs. The simplest is the resistor voltage division measurement method. The disadvantage of this method is that the drift error of large resistance resistors and resistor leakage current lead to low measurement accuracy and affect the consistency of the battery pack. . Another common method is to use an isolated operational amplifier for each single cell, but it is large in size and expensive, and is suitable for situations where high measurement accuracy is required and leakage current and cost are not considered. The design uses Texas Instruments' INA117 to solve the common ground problem of series-connected lithium-ion battery packs [3]. The distortion of INA117 is 0.001%; the minimum common-to-analog ratio is 86dB, and the common-mode input voltage range is ±200V, which is suitable for high-precision Measurement.
INA117 has three built-in resistors of 380kΩ, 20kΩ and 21.1kΩ, so the external circuit eliminates the need for precision resistors, reducing errors and system complexity caused by precision resistors. Figure 2 is the connection method for INA117 to output the voltage of one battery. The voltage between pin 6 and pin 1 is the voltage difference between the two ends of the battery.
The detection system uses 16 INA117 to select the cell voltage of 16 lithium-ion batteries respectively. If their pin 1 is connected to the same ground, 16 INA117s can all have the same signal ground, and the A/D converter can perform sampling. The common point is chosen at the connection between the negative electrode of the 8th battery and the positive electrode of the 9th battery.
The maximum voltage of each lithium-ion battery is 5V. From Figure 3, it can be seen that the input potential of pin 3 of the first INA117 is the highest 40V. Similarly, the input potential of pin 2 of the 16th INA117 is the lowest -40V. The input potential of pin 1 to INA117 is the lowest -40V. The output voltage of the 8 INA117s is positive, and the output voltage of the 9th to 16th INA117 is negative, so the multiple-select analog switch and A/D converter are required to input positive and negative voltages. The multi-select one analog switch uses MUX16, which can select 1 from 16 positive and negative voltage input analog switches, so 16 batteries only require one MUX16. However, due to the limited IO port of the microcontroller, a 74LS154 is used in this article to expand the IO port, and only the microcontroller's IO port is used. The 4 IO ports can control MUX16 to separately select a single lithium-ion battery for voltage sampling.
Read recommendations:
Last article:aaa alkaline battery.An article analyzing the production process of lithium cobalt oxide
Next article:aa alkaline battery.New backlight adjustment technology reduces input power consumption and improves
Popular recommendation
26650 battery Processing
2023-03-22battery 18650 genuine
2023-03-22lifepo4 battery calb 200ah 3.2v
2023-03-22li ion 18650 battery pack wholesale
2023-05-0918650 battery pack 3.7v
2023-03-22701224 145mAh 3.7V
2022-08-19Portable mini fan
2022-09-2214500 850mAh 3.7V
2022-08-19902030 500MAH 3.7V
2023-06-10Lithium Battery GN7250
2022-08-19Coin Battery CR 1620
2022-09-27Aromatherapy
2022-07-22R03P
2022-08-19No.5 card-mounted carbon battery R6P
2023-06-28601248 300MAH 3.7V
2023-06-12AA Ni-MH batteries
2023-06-2518650 lithium ion battery 3.7v
2023-06-25LR1121 battery
2023-06-25602030 polymer battery
2023-06-2518650 2000mah battery
2023-06-25Do you know all these terms in the battery industry
2024-08-22CR2450 battery
2024-09-26The development trend of China's lithium battery recycling market
2022-06-17What should I pay attention to when using robot lithium battery?
2023-02-21New method of lithium battery explanation lithium battery maintenance
2023-02-10AG8 battery.Overview of power lithium battery industry technology: lithium-ion batteries will remain
2023-10-14The battery maintenance of lithium battery manufacturers has the following points.lifepo4 battery fo
2023-03-28Introduction to Negative Electrode Free Batteries.rechargeable battery 18650 3.7v
2023-07-05Will Cold Weather Reduce the Performance of Lithium Batteries.6LR61 alkaline battery
2023-08-24Lithium battery charging voltage.36v battery pack lithium ion
2023-03-28