
Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery

3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .

Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales

Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc

Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.

Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc

Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.

release time:2024-03-05 Hits: Popular:AG11 battery
Long battery life is a key indicator in the portable electronics market. LED backlight drivers for LCD displays account for 25% to 40% of the total effective system power consumption. In the past, designers' tools for minimizing power consumption in backlit displays were limited to reducing LED drive current while increasing converter efficiency. Today, power savings of up to 50% are achieved by using optimized converters utilizing LED drivers, ambient light sensors, and content-adapted backlight control (CABC) methods. These technologies increase drive efficiency without seriously degrading the visual quality of displayed information (websites, videos, pictures, etc.).
Traditional power optimization
Traditionally the main energy-saving technology surrounding backlight drivers has been the choice of boost architecture. Two main types of boost topologies dominate backlight drive architecture: inductive boost and switched capacitor boost. Inductive boost is usually used in series LED driver applications, while switched capacitor boost is usually used in parallel LED driver architectures.
Switched capacitor boost relies on the charging and discharging of a capacitor to create a boosted output voltage. The gain number of the switched capacitor boost is determined by the number of flying capacitors and internal MOSFET switching tubes. By selectively charging the combined series/parallel capacitor between the input and ground of the first phase, and then reconfiguring the parallel/series capacitance between the input and output of the second phase, the converter is able to provide a voltage ratio higher than the input voltage. higher output voltage. (Switched capacitor boost converters are often limited to a fixed voltage gain (1x, 3/2x, sometimes 2x) to help increase the efficiency of the solution while minimizing external component count.) Additionally, The size of the switching transistor used to configure the flying capacitor is critical to maximizing efficiency. Minimizing the gain output impedance allows the charge pump to remain at minimum gain for a significant period of time, helping to increase the efficiency of the solution.
Switched capacitors have a very limited amount of gain, and inductive boost converters have infinite gain. By adjusting the switching duty cycle of the inductive boost, the exact boost gain required to support the load (LED string) can be achieved. This optimization helps prevent excessive boost that can occur on the right side of a switched capacitor boost after a fixed gain transition.
In order to optimize the inductive boost converter, the on-resistance (RDSON) of the NMOS power switch and the series resistance of the inductor should be minimized. Unfortunately, reducing these two parameters usually results in an increase in physical size (generally a larger inductor with the same inductance value will have higher impedance than a smaller inductor.) Increasing the boost switching frequency can be achieved by using an inductor with a larger Inductors with low inductance values are used to reduce the physical size of the inductor, but increasing the switching frequency results in increased switching power losses. Selecting a Schottky diode with a low forward turn-on voltage will help improve conversion efficiency, and lower forward voltage Schottky diodes are typically larger in size than those with higher voltages. Additionally, the high duty cycle (80%) associated with the series backlight driver minimizes the impact of low Vf diodes since the device is only on for a short period of the switching cycle.
The series LED driver implementation method helps minimize the power losses associated with the current control element (usually the current sink). In the case of a series converter, a current sink is needed to control the current through the LED string, while in a parallel converter system each LED also needs a current sink. To further improve efficiency, the current source (currentsource) regulation voltage should be set at a level slightly higher than the sink's headroom (or dropout) voltage to prevent input voltage and/or output voltage changes due to output capacitor charge/discharge cycles. Current changes in the LED string caused by ripple sag.
Ambient light detection
In addition to power converter optimization, other power-saving features can be implemented to create an efficient backlight system. Many modern phones employ a power-saving mechanism that uses an ambient light sensor (ALS) to monitor ambient lighting conditions and adjust the backlight intensity accordingly (more ambient light means the backlight must be driven at a higher current, while at low backlight current can be reduced under lighting conditions). In bright outdoor environments, a very high level of monitor backlighting is required so that the monitor can be seen clearly. In contrast, in very dark environments, the backlight can be dimmed while still providing enough light to keep the display readable.
Ambient light detection requires a light sensor or photodiode in combination with detection circuitry. Most light sensors are current-based devices that provide an output current proportional to the amount of light entering the sensor. This environmental information can be used to determine environmental conditions (outdoors, office, movie theater, etc.) and then used to adjust the backlight to a predetermined brightness level.
Read recommendations:
18650 Battery Pack Applications
Last article:AA Carbon battery.Technology and solutions for power lithium-ion battery pack monitoring system
Next article:6LR61 battery.Mobile phones never charge. US develops super nuclear battery
Popular recommendation
521133 polymer battery
2023-03-22AAA Ni-MH batteries Factory
2023-03-22701224 lipo battery Product
2023-03-22lipo battery direct sales
2023-03-22Ni-MH battery packs Manufacturing
2023-03-226LR61
2022-08-19Lithium-ion battery GN500 140000mAh
2022-08-19Coin Battery CR 1625
2022-09-27775767 3500MAH 7.4V
2023-06-10Ni-MH AA1500mAh 1.2V
2022-07-01LR6
2022-11-1618650 800mAh 3.7V
2022-06-27Coin Battery LR 927
2022-10-15522749 880MAH 3.7V
2023-06-12Lithium-ion battery GN500
2022-07-29lithium 18650 battery
2023-06-259V carbon battery
2023-06-25CR2477 battery
2023-06-2518650 lithium ion battery
2023-06-2518650 battery 3.7v 1800mah
2023-06-25Is lithium battery better or lead-acid battery better
2024-09-19Standard for Military Power Supplies
2024-05-23Lithium manganate (LiMn2O4).lifepo9 battery for solar energy storage Factory
2023-04-18High-Rate Discharge Technology for Lithium Batteries
2025-08-05Application field of lithium iron phosphate battery
2024-03-20Several major factors affecting the performance of lithium battery
2023-02-07What is the reason why the price of power batteries rises rapidly?5kwh energy storage 48v lifepo4 so
2023-03-28Is the lifespan of lithium-ion batteries in electric vehicles really longer than lead-acid batteries
2023-09-16Basic composition of lithium battery protection board.R6 Carbon battery
2023-06-06The correct way to charge lithium batteries.button cell battery cr2025
2023-09-15
360° FACTORY VR TOUR